Description: A set with an empty base set is always a magma. (Contributed by AV, 25-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 0mgm.b | |- ( Base ` M ) = (/) |
|
Assertion | 0mgm | |- ( M e. V -> M e. Mgm ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0mgm.b | |- ( Base ` M ) = (/) |
|
2 | ral0 | |- A. x e. (/) A. y e. (/) ( x ( +g ` M ) y ) e. (/) |
|
3 | 1 | eqcomi | |- (/) = ( Base ` M ) |
4 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
5 | 3 4 | ismgm | |- ( M e. V -> ( M e. Mgm <-> A. x e. (/) A. y e. (/) ( x ( +g ` M ) y ) e. (/) ) ) |
6 | 2 5 | mpbiri | |- ( M e. V -> M e. Mgm ) |