Metamath Proof Explorer


Theorem 0mgm

Description: A set with an empty base set is always a magma. (Contributed by AV, 25-Feb-2020)

Ref Expression
Hypothesis 0mgm.b
|- ( Base ` M ) = (/)
Assertion 0mgm
|- ( M e. V -> M e. Mgm )

Proof

Step Hyp Ref Expression
1 0mgm.b
 |-  ( Base ` M ) = (/)
2 ral0
 |-  A. x e. (/) A. y e. (/) ( x ( +g ` M ) y ) e. (/)
3 1 eqcomi
 |-  (/) = ( Base ` M )
4 eqid
 |-  ( +g ` M ) = ( +g ` M )
5 3 4 ismgm
 |-  ( M e. V -> ( M e. Mgm <-> A. x e. (/) A. y e. (/) ( x ( +g ` M ) y ) e. (/) ) )
6 2 5 mpbiri
 |-  ( M e. V -> M e. Mgm )