Description: A set with an empty base set is always a magma. (Contributed by AV, 25-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0mgm.b | |- ( Base ` M ) = (/) |
|
| Assertion | 0mgm | |- ( M e. V -> M e. Mgm ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0mgm.b | |- ( Base ` M ) = (/) |
|
| 2 | ral0 | |- A. x e. (/) A. y e. (/) ( x ( +g ` M ) y ) e. (/) |
|
| 3 | 1 | eqcomi | |- (/) = ( Base ` M ) |
| 4 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 5 | 3 4 | ismgm | |- ( M e. V -> ( M e. Mgm <-> A. x e. (/) A. y e. (/) ( x ( +g ` M ) y ) e. (/) ) ) |
| 6 | 2 5 | mpbiri | |- ( M e. V -> M e. Mgm ) |