Metamath Proof Explorer


Theorem 0mgm

Description: A set with an empty base set is always a magma. (Contributed by AV, 25-Feb-2020)

Ref Expression
Hypothesis 0mgm.b ( Base ‘ 𝑀 ) = ∅
Assertion 0mgm ( 𝑀𝑉𝑀 ∈ Mgm )

Proof

Step Hyp Ref Expression
1 0mgm.b ( Base ‘ 𝑀 ) = ∅
2 ral0 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 ( +g𝑀 ) 𝑦 ) ∈ ∅
3 1 eqcomi ∅ = ( Base ‘ 𝑀 )
4 eqid ( +g𝑀 ) = ( +g𝑀 )
5 3 4 ismgm ( 𝑀𝑉 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 ( +g𝑀 ) 𝑦 ) ∈ ∅ ) )
6 2 5 mpbiri ( 𝑀𝑉𝑀 ∈ Mgm )