Description: A set with an empty base set is always a magma. (Contributed by AV, 25-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0mgm.b | ⊢ ( Base ‘ 𝑀 ) = ∅ | |
| Assertion | 0mgm | ⊢ ( 𝑀 ∈ 𝑉 → 𝑀 ∈ Mgm ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0mgm.b | ⊢ ( Base ‘ 𝑀 ) = ∅ | |
| 2 | ral0 | ⊢ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ∅ | |
| 3 | 1 | eqcomi | ⊢ ∅ = ( Base ‘ 𝑀 ) |
| 4 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 5 | 3 4 | ismgm | ⊢ ( 𝑀 ∈ 𝑉 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ∅ ) ) |
| 6 | 2 5 | mpbiri | ⊢ ( 𝑀 ∈ 𝑉 → 𝑀 ∈ Mgm ) |