Description: A set with an empty base set is always a magma. (Contributed by AV, 25-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 0mgm.b | ⊢ ( Base ‘ 𝑀 ) = ∅ | |
Assertion | 0mgm | ⊢ ( 𝑀 ∈ 𝑉 → 𝑀 ∈ Mgm ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0mgm.b | ⊢ ( Base ‘ 𝑀 ) = ∅ | |
2 | ral0 | ⊢ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ∅ | |
3 | 1 | eqcomi | ⊢ ∅ = ( Base ‘ 𝑀 ) |
4 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
5 | 3 4 | ismgm | ⊢ ( 𝑀 ∈ 𝑉 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ∅ ) ) |
6 | 2 5 | mpbiri | ⊢ ( 𝑀 ∈ 𝑉 → 𝑀 ∈ Mgm ) |