Metamath Proof Explorer


Theorem 0mgm

Description: A set with an empty base set is always a magma. (Contributed by AV, 25-Feb-2020)

Ref Expression
Hypothesis 0mgm.b Base M =
Assertion 0mgm M V M Mgm

Proof

Step Hyp Ref Expression
1 0mgm.b Base M =
2 ral0 x y x + M y
3 1 eqcomi = Base M
4 eqid + M = + M
5 3 4 ismgm M V M Mgm x y x + M y
6 2 5 mpbiri M V M Mgm