| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0setrec.1 |  |-  ( ph -> ( F ` (/) ) = (/) ) | 
						
							| 2 |  | eqid |  |-  setrecs ( F ) = setrecs ( F ) | 
						
							| 3 |  | ss0 |  |-  ( x C_ (/) -> x = (/) ) | 
						
							| 4 |  | fveq2 |  |-  ( x = (/) -> ( F ` x ) = ( F ` (/) ) ) | 
						
							| 5 | 4 1 | sylan9eqr |  |-  ( ( ph /\ x = (/) ) -> ( F ` x ) = (/) ) | 
						
							| 6 | 5 | ex |  |-  ( ph -> ( x = (/) -> ( F ` x ) = (/) ) ) | 
						
							| 7 |  | eqimss |  |-  ( ( F ` x ) = (/) -> ( F ` x ) C_ (/) ) | 
						
							| 8 | 3 6 7 | syl56 |  |-  ( ph -> ( x C_ (/) -> ( F ` x ) C_ (/) ) ) | 
						
							| 9 | 8 | alrimiv |  |-  ( ph -> A. x ( x C_ (/) -> ( F ` x ) C_ (/) ) ) | 
						
							| 10 | 2 9 | setrec2v |  |-  ( ph -> setrecs ( F ) C_ (/) ) | 
						
							| 11 |  | ss0 |  |-  ( setrecs ( F ) C_ (/) -> setrecs ( F ) = (/) ) | 
						
							| 12 | 10 11 | syl |  |-  ( ph -> setrecs ( F ) = (/) ) |