Metamath Proof Explorer


Theorem 0setrec

Description: If a function sends the empty set to itself, the function will not recursively generate any sets, regardless of its other values. (Contributed by Emmett Weisz, 23-Jun-2021)

Ref Expression
Hypothesis 0setrec.1
|- ( ph -> ( F ` (/) ) = (/) )
Assertion 0setrec
|- ( ph -> setrecs ( F ) = (/) )

Proof

Step Hyp Ref Expression
1 0setrec.1
 |-  ( ph -> ( F ` (/) ) = (/) )
2 eqid
 |-  setrecs ( F ) = setrecs ( F )
3 ss0
 |-  ( x C_ (/) -> x = (/) )
4 fveq2
 |-  ( x = (/) -> ( F ` x ) = ( F ` (/) ) )
5 4 1 sylan9eqr
 |-  ( ( ph /\ x = (/) ) -> ( F ` x ) = (/) )
6 5 ex
 |-  ( ph -> ( x = (/) -> ( F ` x ) = (/) ) )
7 eqimss
 |-  ( ( F ` x ) = (/) -> ( F ` x ) C_ (/) )
8 3 6 7 syl56
 |-  ( ph -> ( x C_ (/) -> ( F ` x ) C_ (/) ) )
9 8 alrimiv
 |-  ( ph -> A. x ( x C_ (/) -> ( F ` x ) C_ (/) ) )
10 2 9 setrec2v
 |-  ( ph -> setrecs ( F ) C_ (/) )
11 ss0
 |-  ( setrecs ( F ) C_ (/) -> setrecs ( F ) = (/) )
12 10 11 syl
 |-  ( ph -> setrecs ( F ) = (/) )