| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0setrec.1 |
|- ( ph -> ( F ` (/) ) = (/) ) |
| 2 |
|
eqid |
|- setrecs ( F ) = setrecs ( F ) |
| 3 |
|
ss0 |
|- ( x C_ (/) -> x = (/) ) |
| 4 |
|
fveq2 |
|- ( x = (/) -> ( F ` x ) = ( F ` (/) ) ) |
| 5 |
4 1
|
sylan9eqr |
|- ( ( ph /\ x = (/) ) -> ( F ` x ) = (/) ) |
| 6 |
5
|
ex |
|- ( ph -> ( x = (/) -> ( F ` x ) = (/) ) ) |
| 7 |
|
eqimss |
|- ( ( F ` x ) = (/) -> ( F ` x ) C_ (/) ) |
| 8 |
3 6 7
|
syl56 |
|- ( ph -> ( x C_ (/) -> ( F ` x ) C_ (/) ) ) |
| 9 |
8
|
alrimiv |
|- ( ph -> A. x ( x C_ (/) -> ( F ` x ) C_ (/) ) ) |
| 10 |
2 9
|
setrec2v |
|- ( ph -> setrecs ( F ) C_ (/) ) |
| 11 |
|
ss0 |
|- ( setrecs ( F ) C_ (/) -> setrecs ( F ) = (/) ) |
| 12 |
10 11
|
syl |
|- ( ph -> setrecs ( F ) = (/) ) |