Step |
Hyp |
Ref |
Expression |
1 |
|
0setrec.1 |
|- ( ph -> ( F ` (/) ) = (/) ) |
2 |
|
eqid |
|- setrecs ( F ) = setrecs ( F ) |
3 |
|
ss0 |
|- ( x C_ (/) -> x = (/) ) |
4 |
|
fveq2 |
|- ( x = (/) -> ( F ` x ) = ( F ` (/) ) ) |
5 |
4 1
|
sylan9eqr |
|- ( ( ph /\ x = (/) ) -> ( F ` x ) = (/) ) |
6 |
5
|
ex |
|- ( ph -> ( x = (/) -> ( F ` x ) = (/) ) ) |
7 |
|
eqimss |
|- ( ( F ` x ) = (/) -> ( F ` x ) C_ (/) ) |
8 |
3 6 7
|
syl56 |
|- ( ph -> ( x C_ (/) -> ( F ` x ) C_ (/) ) ) |
9 |
8
|
alrimiv |
|- ( ph -> A. x ( x C_ (/) -> ( F ` x ) C_ (/) ) ) |
10 |
2 9
|
setrec2v |
|- ( ph -> setrecs ( F ) C_ (/) ) |
11 |
|
ss0 |
|- ( setrecs ( F ) C_ (/) -> setrecs ( F ) = (/) ) |
12 |
10 11
|
syl |
|- ( ph -> setrecs ( F ) = (/) ) |