Step |
Hyp |
Ref |
Expression |
1 |
|
1arympt1.f |
|- F = ( x e. ( X ^m { 0 } ) |-> ( A ` ( x ` 0 ) ) ) |
2 |
1
|
a1i |
|- ( ( X e. V /\ B e. X ) -> F = ( x e. ( X ^m { 0 } ) |-> ( A ` ( x ` 0 ) ) ) ) |
3 |
|
fveq1 |
|- ( x = { <. 0 , B >. } -> ( x ` 0 ) = ( { <. 0 , B >. } ` 0 ) ) |
4 |
3
|
adantl |
|- ( ( ( X e. V /\ B e. X ) /\ x = { <. 0 , B >. } ) -> ( x ` 0 ) = ( { <. 0 , B >. } ` 0 ) ) |
5 |
|
c0ex |
|- 0 e. _V |
6 |
5
|
a1i |
|- ( X e. V -> 0 e. _V ) |
7 |
6
|
anim1i |
|- ( ( X e. V /\ B e. X ) -> ( 0 e. _V /\ B e. X ) ) |
8 |
7
|
adantr |
|- ( ( ( X e. V /\ B e. X ) /\ x = { <. 0 , B >. } ) -> ( 0 e. _V /\ B e. X ) ) |
9 |
|
fvsng |
|- ( ( 0 e. _V /\ B e. X ) -> ( { <. 0 , B >. } ` 0 ) = B ) |
10 |
8 9
|
syl |
|- ( ( ( X e. V /\ B e. X ) /\ x = { <. 0 , B >. } ) -> ( { <. 0 , B >. } ` 0 ) = B ) |
11 |
4 10
|
eqtrd |
|- ( ( ( X e. V /\ B e. X ) /\ x = { <. 0 , B >. } ) -> ( x ` 0 ) = B ) |
12 |
11
|
fveq2d |
|- ( ( ( X e. V /\ B e. X ) /\ x = { <. 0 , B >. } ) -> ( A ` ( x ` 0 ) ) = ( A ` B ) ) |
13 |
5
|
a1i |
|- ( ( X e. V /\ B e. X ) -> 0 e. _V ) |
14 |
|
simpr |
|- ( ( X e. V /\ B e. X ) -> B e. X ) |
15 |
13 14
|
fsnd |
|- ( ( X e. V /\ B e. X ) -> { <. 0 , B >. } : { 0 } --> X ) |
16 |
|
snex |
|- { 0 } e. _V |
17 |
16
|
a1i |
|- ( B e. X -> { 0 } e. _V ) |
18 |
|
elmapg |
|- ( ( X e. V /\ { 0 } e. _V ) -> ( { <. 0 , B >. } e. ( X ^m { 0 } ) <-> { <. 0 , B >. } : { 0 } --> X ) ) |
19 |
17 18
|
sylan2 |
|- ( ( X e. V /\ B e. X ) -> ( { <. 0 , B >. } e. ( X ^m { 0 } ) <-> { <. 0 , B >. } : { 0 } --> X ) ) |
20 |
15 19
|
mpbird |
|- ( ( X e. V /\ B e. X ) -> { <. 0 , B >. } e. ( X ^m { 0 } ) ) |
21 |
|
fvexd |
|- ( ( X e. V /\ B e. X ) -> ( A ` B ) e. _V ) |
22 |
2 12 20 21
|
fvmptd |
|- ( ( X e. V /\ B e. X ) -> ( F ` { <. 0 , B >. } ) = ( A ` B ) ) |