Metamath Proof Explorer


Theorem 1arympt1fv

Description: The value of a unary (endo)function in maps-to notation. (Contributed by AV, 16-May-2024)

Ref Expression
Hypothesis 1arympt1.f 𝐹 = ( 𝑥 ∈ ( 𝑋m { 0 } ) ↦ ( 𝐴 ‘ ( 𝑥 ‘ 0 ) ) )
Assertion 1arympt1fv ( ( 𝑋𝑉𝐵𝑋 ) → ( 𝐹 ‘ { ⟨ 0 , 𝐵 ⟩ } ) = ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 1arympt1.f 𝐹 = ( 𝑥 ∈ ( 𝑋m { 0 } ) ↦ ( 𝐴 ‘ ( 𝑥 ‘ 0 ) ) )
2 1 a1i ( ( 𝑋𝑉𝐵𝑋 ) → 𝐹 = ( 𝑥 ∈ ( 𝑋m { 0 } ) ↦ ( 𝐴 ‘ ( 𝑥 ‘ 0 ) ) ) )
3 fveq1 ( 𝑥 = { ⟨ 0 , 𝐵 ⟩ } → ( 𝑥 ‘ 0 ) = ( { ⟨ 0 , 𝐵 ⟩ } ‘ 0 ) )
4 3 adantl ( ( ( 𝑋𝑉𝐵𝑋 ) ∧ 𝑥 = { ⟨ 0 , 𝐵 ⟩ } ) → ( 𝑥 ‘ 0 ) = ( { ⟨ 0 , 𝐵 ⟩ } ‘ 0 ) )
5 c0ex 0 ∈ V
6 5 a1i ( 𝑋𝑉 → 0 ∈ V )
7 6 anim1i ( ( 𝑋𝑉𝐵𝑋 ) → ( 0 ∈ V ∧ 𝐵𝑋 ) )
8 7 adantr ( ( ( 𝑋𝑉𝐵𝑋 ) ∧ 𝑥 = { ⟨ 0 , 𝐵 ⟩ } ) → ( 0 ∈ V ∧ 𝐵𝑋 ) )
9 fvsng ( ( 0 ∈ V ∧ 𝐵𝑋 ) → ( { ⟨ 0 , 𝐵 ⟩ } ‘ 0 ) = 𝐵 )
10 8 9 syl ( ( ( 𝑋𝑉𝐵𝑋 ) ∧ 𝑥 = { ⟨ 0 , 𝐵 ⟩ } ) → ( { ⟨ 0 , 𝐵 ⟩ } ‘ 0 ) = 𝐵 )
11 4 10 eqtrd ( ( ( 𝑋𝑉𝐵𝑋 ) ∧ 𝑥 = { ⟨ 0 , 𝐵 ⟩ } ) → ( 𝑥 ‘ 0 ) = 𝐵 )
12 11 fveq2d ( ( ( 𝑋𝑉𝐵𝑋 ) ∧ 𝑥 = { ⟨ 0 , 𝐵 ⟩ } ) → ( 𝐴 ‘ ( 𝑥 ‘ 0 ) ) = ( 𝐴𝐵 ) )
13 5 a1i ( ( 𝑋𝑉𝐵𝑋 ) → 0 ∈ V )
14 simpr ( ( 𝑋𝑉𝐵𝑋 ) → 𝐵𝑋 )
15 13 14 fsnd ( ( 𝑋𝑉𝐵𝑋 ) → { ⟨ 0 , 𝐵 ⟩ } : { 0 } ⟶ 𝑋 )
16 snex { 0 } ∈ V
17 16 a1i ( 𝐵𝑋 → { 0 } ∈ V )
18 elmapg ( ( 𝑋𝑉 ∧ { 0 } ∈ V ) → ( { ⟨ 0 , 𝐵 ⟩ } ∈ ( 𝑋m { 0 } ) ↔ { ⟨ 0 , 𝐵 ⟩ } : { 0 } ⟶ 𝑋 ) )
19 17 18 sylan2 ( ( 𝑋𝑉𝐵𝑋 ) → ( { ⟨ 0 , 𝐵 ⟩ } ∈ ( 𝑋m { 0 } ) ↔ { ⟨ 0 , 𝐵 ⟩ } : { 0 } ⟶ 𝑋 ) )
20 15 19 mpbird ( ( 𝑋𝑉𝐵𝑋 ) → { ⟨ 0 , 𝐵 ⟩ } ∈ ( 𝑋m { 0 } ) )
21 fvexd ( ( 𝑋𝑉𝐵𝑋 ) → ( 𝐴𝐵 ) ∈ V )
22 2 12 20 21 fvmptd ( ( 𝑋𝑉𝐵𝑋 ) → ( 𝐹 ‘ { ⟨ 0 , 𝐵 ⟩ } ) = ( 𝐴𝐵 ) )