Step |
Hyp |
Ref |
Expression |
1 |
|
1arymaptfv.h |
⊢ 𝐻 = ( ℎ ∈ ( 1 -aryF 𝑋 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ℎ ‘ { 〈 0 , 𝑥 〉 } ) ) ) |
2 |
|
fveq1 |
⊢ ( ℎ = 𝐹 → ( ℎ ‘ { 〈 0 , 𝑥 〉 } ) = ( 𝐹 ‘ { 〈 0 , 𝑥 〉 } ) ) |
3 |
2
|
mpteq2dv |
⊢ ( ℎ = 𝐹 → ( 𝑥 ∈ 𝑋 ↦ ( ℎ ‘ { 〈 0 , 𝑥 〉 } ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ { 〈 0 , 𝑥 〉 } ) ) ) |
4 |
|
eqid |
⊢ ( 0 ..^ 1 ) = ( 0 ..^ 1 ) |
5 |
4
|
naryrcl |
⊢ ( ℎ ∈ ( 1 -aryF 𝑋 ) → ( 1 ∈ ℕ0 ∧ 𝑋 ∈ V ) ) |
6 |
5
|
simprd |
⊢ ( ℎ ∈ ( 1 -aryF 𝑋 ) → 𝑋 ∈ V ) |
7 |
6
|
mptexd |
⊢ ( ℎ ∈ ( 1 -aryF 𝑋 ) → ( 𝑥 ∈ 𝑋 ↦ ( ℎ ‘ { 〈 0 , 𝑥 〉 } ) ) ∈ V ) |
8 |
3 1 7
|
fvmpt3 |
⊢ ( 𝐹 ∈ ( 1 -aryF 𝑋 ) → ( 𝐻 ‘ 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ { 〈 0 , 𝑥 〉 } ) ) ) |