Metamath Proof Explorer


Theorem 1arymaptfv

Description: The value of the mapping of unary (endo)functions. (Contributed by AV, 18-May-2024)

Ref Expression
Hypothesis 1arymaptfv.h 𝐻 = ( ∈ ( 1 -aryF 𝑋 ) ↦ ( 𝑥𝑋 ↦ ( ‘ { ⟨ 0 , 𝑥 ⟩ } ) ) )
Assertion 1arymaptfv ( 𝐹 ∈ ( 1 -aryF 𝑋 ) → ( 𝐻𝐹 ) = ( 𝑥𝑋 ↦ ( 𝐹 ‘ { ⟨ 0 , 𝑥 ⟩ } ) ) )

Proof

Step Hyp Ref Expression
1 1arymaptfv.h 𝐻 = ( ∈ ( 1 -aryF 𝑋 ) ↦ ( 𝑥𝑋 ↦ ( ‘ { ⟨ 0 , 𝑥 ⟩ } ) ) )
2 fveq1 ( = 𝐹 → ( ‘ { ⟨ 0 , 𝑥 ⟩ } ) = ( 𝐹 ‘ { ⟨ 0 , 𝑥 ⟩ } ) )
3 2 mpteq2dv ( = 𝐹 → ( 𝑥𝑋 ↦ ( ‘ { ⟨ 0 , 𝑥 ⟩ } ) ) = ( 𝑥𝑋 ↦ ( 𝐹 ‘ { ⟨ 0 , 𝑥 ⟩ } ) ) )
4 eqid ( 0 ..^ 1 ) = ( 0 ..^ 1 )
5 4 naryrcl ( ∈ ( 1 -aryF 𝑋 ) → ( 1 ∈ ℕ0𝑋 ∈ V ) )
6 5 simprd ( ∈ ( 1 -aryF 𝑋 ) → 𝑋 ∈ V )
7 6 mptexd ( ∈ ( 1 -aryF 𝑋 ) → ( 𝑥𝑋 ↦ ( ‘ { ⟨ 0 , 𝑥 ⟩ } ) ) ∈ V )
8 3 1 7 fvmpt3 ( 𝐹 ∈ ( 1 -aryF 𝑋 ) → ( 𝐻𝐹 ) = ( 𝑥𝑋 ↦ ( 𝐹 ‘ { ⟨ 0 , 𝑥 ⟩ } ) ) )