Step |
Hyp |
Ref |
Expression |
1 |
|
1arymaptfv.h |
|- H = ( h e. ( 1 -aryF X ) |-> ( x e. X |-> ( h ` { <. 0 , x >. } ) ) ) |
2 |
|
fveq1 |
|- ( h = F -> ( h ` { <. 0 , x >. } ) = ( F ` { <. 0 , x >. } ) ) |
3 |
2
|
mpteq2dv |
|- ( h = F -> ( x e. X |-> ( h ` { <. 0 , x >. } ) ) = ( x e. X |-> ( F ` { <. 0 , x >. } ) ) ) |
4 |
|
eqid |
|- ( 0 ..^ 1 ) = ( 0 ..^ 1 ) |
5 |
4
|
naryrcl |
|- ( h e. ( 1 -aryF X ) -> ( 1 e. NN0 /\ X e. _V ) ) |
6 |
5
|
simprd |
|- ( h e. ( 1 -aryF X ) -> X e. _V ) |
7 |
6
|
mptexd |
|- ( h e. ( 1 -aryF X ) -> ( x e. X |-> ( h ` { <. 0 , x >. } ) ) e. _V ) |
8 |
3 1 7
|
fvmpt3 |
|- ( F e. ( 1 -aryF X ) -> ( H ` F ) = ( x e. X |-> ( F ` { <. 0 , x >. } ) ) ) |