Metamath Proof Explorer


Theorem 1arymaptfv

Description: The value of the mapping of unary (endo)functions. (Contributed by AV, 18-May-2024)

Ref Expression
Hypothesis 1arymaptfv.h
|- H = ( h e. ( 1 -aryF X ) |-> ( x e. X |-> ( h ` { <. 0 , x >. } ) ) )
Assertion 1arymaptfv
|- ( F e. ( 1 -aryF X ) -> ( H ` F ) = ( x e. X |-> ( F ` { <. 0 , x >. } ) ) )

Proof

Step Hyp Ref Expression
1 1arymaptfv.h
 |-  H = ( h e. ( 1 -aryF X ) |-> ( x e. X |-> ( h ` { <. 0 , x >. } ) ) )
2 fveq1
 |-  ( h = F -> ( h ` { <. 0 , x >. } ) = ( F ` { <. 0 , x >. } ) )
3 2 mpteq2dv
 |-  ( h = F -> ( x e. X |-> ( h ` { <. 0 , x >. } ) ) = ( x e. X |-> ( F ` { <. 0 , x >. } ) ) )
4 eqid
 |-  ( 0 ..^ 1 ) = ( 0 ..^ 1 )
5 4 naryrcl
 |-  ( h e. ( 1 -aryF X ) -> ( 1 e. NN0 /\ X e. _V ) )
6 5 simprd
 |-  ( h e. ( 1 -aryF X ) -> X e. _V )
7 6 mptexd
 |-  ( h e. ( 1 -aryF X ) -> ( x e. X |-> ( h ` { <. 0 , x >. } ) ) e. _V )
8 3 1 7 fvmpt3
 |-  ( F e. ( 1 -aryF X ) -> ( H ` F ) = ( x e. X |-> ( F ` { <. 0 , x >. } ) ) )