Metamath Proof Explorer


Theorem 1arymaptf

Description: The mapping of unary (endo)functions is a function into the set of endofunctions. (Contributed by AV, 18-May-2024)

Ref Expression
Hypothesis 1arymaptfv.h
|- H = ( h e. ( 1 -aryF X ) |-> ( x e. X |-> ( h ` { <. 0 , x >. } ) ) )
Assertion 1arymaptf
|- ( X e. V -> H : ( 1 -aryF X ) --> ( X ^m X ) )

Proof

Step Hyp Ref Expression
1 1arymaptfv.h
 |-  H = ( h e. ( 1 -aryF X ) |-> ( x e. X |-> ( h ` { <. 0 , x >. } ) ) )
2 fv1arycl
 |-  ( ( h e. ( 1 -aryF X ) /\ x e. X ) -> ( h ` { <. 0 , x >. } ) e. X )
3 2 adantll
 |-  ( ( ( X e. V /\ h e. ( 1 -aryF X ) ) /\ x e. X ) -> ( h ` { <. 0 , x >. } ) e. X )
4 3 fmpttd
 |-  ( ( X e. V /\ h e. ( 1 -aryF X ) ) -> ( x e. X |-> ( h ` { <. 0 , x >. } ) ) : X --> X )
5 simpl
 |-  ( ( X e. V /\ h e. ( 1 -aryF X ) ) -> X e. V )
6 5 5 elmapd
 |-  ( ( X e. V /\ h e. ( 1 -aryF X ) ) -> ( ( x e. X |-> ( h ` { <. 0 , x >. } ) ) e. ( X ^m X ) <-> ( x e. X |-> ( h ` { <. 0 , x >. } ) ) : X --> X ) )
7 4 6 mpbird
 |-  ( ( X e. V /\ h e. ( 1 -aryF X ) ) -> ( x e. X |-> ( h ` { <. 0 , x >. } ) ) e. ( X ^m X ) )
8 7 1 fmptd
 |-  ( X e. V -> H : ( 1 -aryF X ) --> ( X ^m X ) )