Metamath Proof Explorer


Theorem 1arymaptf

Description: The mapping of unary (endo)functions is a function into the set of endofunctions. (Contributed by AV, 18-May-2024)

Ref Expression
Hypothesis 1arymaptfv.h H = h 1 -aryF X x X h 0 x
Assertion 1arymaptf X V H : 1 -aryF X X X

Proof

Step Hyp Ref Expression
1 1arymaptfv.h H = h 1 -aryF X x X h 0 x
2 fv1arycl h 1 -aryF X x X h 0 x X
3 2 adantll X V h 1 -aryF X x X h 0 x X
4 3 fmpttd X V h 1 -aryF X x X h 0 x : X X
5 simpl X V h 1 -aryF X X V
6 5 5 elmapd X V h 1 -aryF X x X h 0 x X X x X h 0 x : X X
7 4 6 mpbird X V h 1 -aryF X x X h 0 x X X
8 7 1 fmptd X V H : 1 -aryF X X X