Metamath Proof Explorer


Theorem 1arymaptf1

Description: The mapping of unary (endo)functions is a one-to-one function into the set of endofunctions. (Contributed by AV, 19-May-2024)

Ref Expression
Hypothesis 1arymaptfv.h H = h 1 -aryF X x X h 0 x
Assertion 1arymaptf1 X V H : 1 -aryF X 1-1 X X

Proof

Step Hyp Ref Expression
1 1arymaptfv.h H = h 1 -aryF X x X h 0 x
2 1 1arymaptf X V H : 1 -aryF X X X
3 1 1arymaptfv f 1 -aryF X H f = x X f 0 x
4 3 ad2antrl X V f 1 -aryF X g 1 -aryF X H f = x X f 0 x
5 1 1arymaptfv g 1 -aryF X H g = x X g 0 x
6 5 ad2antll X V f 1 -aryF X g 1 -aryF X H g = x X g 0 x
7 4 6 eqeq12d X V f 1 -aryF X g 1 -aryF X H f = H g x X f 0 x = x X g 0 x
8 fvex f 0 x V
9 8 rgenw x X f 0 x V
10 mpteqb x X f 0 x V x X f 0 x = x X g 0 x x X f 0 x = g 0 x
11 9 10 mp1i X V f 1 -aryF X g 1 -aryF X x X f 0 x = x X g 0 x x X f 0 x = g 0 x
12 1aryfvalel X V f 1 -aryF X f : X 0 X
13 1aryfvalel X V g 1 -aryF X g : X 0 X
14 12 13 anbi12d X V f 1 -aryF X g 1 -aryF X f : X 0 X g : X 0 X
15 ffn f : X 0 X f Fn X 0
16 15 adantr f : X 0 X g : X 0 X f Fn X 0
17 16 3ad2ant2 X V f : X 0 X g : X 0 X x X f 0 x = g 0 x f Fn X 0
18 ffn g : X 0 X g Fn X 0
19 18 adantl f : X 0 X g : X 0 X g Fn X 0
20 19 3ad2ant2 X V f : X 0 X g : X 0 X x X f 0 x = g 0 x g Fn X 0
21 elmapi y X 0 y : 0 X
22 c0ex 0 V
23 22 fsn2 y : 0 X y 0 X y = 0 y 0
24 21 23 sylib y X 0 y 0 X y = 0 y 0
25 opeq2 x = y 0 0 x = 0 y 0
26 25 sneqd x = y 0 0 x = 0 y 0
27 26 fveq2d x = y 0 f 0 x = f 0 y 0
28 26 fveq2d x = y 0 g 0 x = g 0 y 0
29 27 28 eqeq12d x = y 0 f 0 x = g 0 x f 0 y 0 = g 0 y 0
30 29 rspccv x X f 0 x = g 0 x y 0 X f 0 y 0 = g 0 y 0
31 30 3ad2ant3 X V f : X 0 X g : X 0 X x X f 0 x = g 0 x y 0 X f 0 y 0 = g 0 y 0
32 31 com12 y 0 X X V f : X 0 X g : X 0 X x X f 0 x = g 0 x f 0 y 0 = g 0 y 0
33 32 adantr y 0 X y = 0 y 0 X V f : X 0 X g : X 0 X x X f 0 x = g 0 x f 0 y 0 = g 0 y 0
34 fveq2 y = 0 y 0 f y = f 0 y 0
35 fveq2 y = 0 y 0 g y = g 0 y 0
36 34 35 eqeq12d y = 0 y 0 f y = g y f 0 y 0 = g 0 y 0
37 36 adantl y 0 X y = 0 y 0 f y = g y f 0 y 0 = g 0 y 0
38 33 37 sylibrd y 0 X y = 0 y 0 X V f : X 0 X g : X 0 X x X f 0 x = g 0 x f y = g y
39 24 38 syl y X 0 X V f : X 0 X g : X 0 X x X f 0 x = g 0 x f y = g y
40 39 impcom X V f : X 0 X g : X 0 X x X f 0 x = g 0 x y X 0 f y = g y
41 17 20 40 eqfnfvd X V f : X 0 X g : X 0 X x X f 0 x = g 0 x f = g
42 41 3exp X V f : X 0 X g : X 0 X x X f 0 x = g 0 x f = g
43 14 42 sylbid X V f 1 -aryF X g 1 -aryF X x X f 0 x = g 0 x f = g
44 43 imp X V f 1 -aryF X g 1 -aryF X x X f 0 x = g 0 x f = g
45 11 44 sylbid X V f 1 -aryF X g 1 -aryF X x X f 0 x = x X g 0 x f = g
46 7 45 sylbid X V f 1 -aryF X g 1 -aryF X H f = H g f = g
47 46 ralrimivva X V f 1 -aryF X g 1 -aryF X H f = H g f = g
48 dff13 H : 1 -aryF X 1-1 X X H : 1 -aryF X X X f 1 -aryF X g 1 -aryF X H f = H g f = g
49 2 47 48 sylanbrc X V H : 1 -aryF X 1-1 X X