| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1arymaptfv.h |
|
| 2 |
1
|
1arymaptf |
|
| 3 |
1
|
1arymaptfv |
|
| 4 |
3
|
ad2antrl |
|
| 5 |
1
|
1arymaptfv |
|
| 6 |
5
|
ad2antll |
|
| 7 |
4 6
|
eqeq12d |
|
| 8 |
|
fvex |
|
| 9 |
8
|
rgenw |
|
| 10 |
|
mpteqb |
|
| 11 |
9 10
|
mp1i |
|
| 12 |
|
1aryfvalel |
|
| 13 |
|
1aryfvalel |
|
| 14 |
12 13
|
anbi12d |
|
| 15 |
|
ffn |
|
| 16 |
15
|
adantr |
|
| 17 |
16
|
3ad2ant2 |
|
| 18 |
|
ffn |
|
| 19 |
18
|
adantl |
|
| 20 |
19
|
3ad2ant2 |
|
| 21 |
|
elmapi |
|
| 22 |
|
c0ex |
|
| 23 |
22
|
fsn2 |
|
| 24 |
21 23
|
sylib |
|
| 25 |
|
opeq2 |
|
| 26 |
25
|
sneqd |
|
| 27 |
26
|
fveq2d |
|
| 28 |
26
|
fveq2d |
|
| 29 |
27 28
|
eqeq12d |
|
| 30 |
29
|
rspccv |
|
| 31 |
30
|
3ad2ant3 |
|
| 32 |
31
|
com12 |
|
| 33 |
32
|
adantr |
|
| 34 |
|
fveq2 |
|
| 35 |
|
fveq2 |
|
| 36 |
34 35
|
eqeq12d |
|
| 37 |
36
|
adantl |
|
| 38 |
33 37
|
sylibrd |
|
| 39 |
24 38
|
syl |
|
| 40 |
39
|
impcom |
|
| 41 |
17 20 40
|
eqfnfvd |
|
| 42 |
41
|
3exp |
|
| 43 |
14 42
|
sylbid |
|
| 44 |
43
|
imp |
|
| 45 |
11 44
|
sylbid |
|
| 46 |
7 45
|
sylbid |
|
| 47 |
46
|
ralrimivva |
|
| 48 |
|
dff13 |
|
| 49 |
2 47 48
|
sylanbrc |
|