| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1arymaptfv.h |  | 
						
							| 2 | 1 | 1arymaptf |  | 
						
							| 3 | 1 | 1arymaptfv |  | 
						
							| 4 | 3 | ad2antrl |  | 
						
							| 5 | 1 | 1arymaptfv |  | 
						
							| 6 | 5 | ad2antll |  | 
						
							| 7 | 4 6 | eqeq12d |  | 
						
							| 8 |  | fvex |  | 
						
							| 9 | 8 | rgenw |  | 
						
							| 10 |  | mpteqb |  | 
						
							| 11 | 9 10 | mp1i |  | 
						
							| 12 |  | 1aryfvalel |  | 
						
							| 13 |  | 1aryfvalel |  | 
						
							| 14 | 12 13 | anbi12d |  | 
						
							| 15 |  | ffn |  | 
						
							| 16 | 15 | adantr |  | 
						
							| 17 | 16 | 3ad2ant2 |  | 
						
							| 18 |  | ffn |  | 
						
							| 19 | 18 | adantl |  | 
						
							| 20 | 19 | 3ad2ant2 |  | 
						
							| 21 |  | elmapi |  | 
						
							| 22 |  | c0ex |  | 
						
							| 23 | 22 | fsn2 |  | 
						
							| 24 | 21 23 | sylib |  | 
						
							| 25 |  | opeq2 |  | 
						
							| 26 | 25 | sneqd |  | 
						
							| 27 | 26 | fveq2d |  | 
						
							| 28 | 26 | fveq2d |  | 
						
							| 29 | 27 28 | eqeq12d |  | 
						
							| 30 | 29 | rspccv |  | 
						
							| 31 | 30 | 3ad2ant3 |  | 
						
							| 32 | 31 | com12 |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 |  | fveq2 |  | 
						
							| 35 |  | fveq2 |  | 
						
							| 36 | 34 35 | eqeq12d |  | 
						
							| 37 | 36 | adantl |  | 
						
							| 38 | 33 37 | sylibrd |  | 
						
							| 39 | 24 38 | syl |  | 
						
							| 40 | 39 | impcom |  | 
						
							| 41 | 17 20 40 | eqfnfvd |  | 
						
							| 42 | 41 | 3exp |  | 
						
							| 43 | 14 42 | sylbid |  | 
						
							| 44 | 43 | imp |  | 
						
							| 45 | 11 44 | sylbid |  | 
						
							| 46 | 7 45 | sylbid |  | 
						
							| 47 | 46 | ralrimivva |  | 
						
							| 48 |  | dff13 |  | 
						
							| 49 | 2 47 48 | sylanbrc |  |