Metamath Proof Explorer


Theorem 1arymaptfv

Description: The value of the mapping of unary (endo)functions. (Contributed by AV, 18-May-2024)

Ref Expression
Hypothesis 1arymaptfv.h H = h 1 -aryF X x X h 0 x
Assertion 1arymaptfv F 1 -aryF X H F = x X F 0 x

Proof

Step Hyp Ref Expression
1 1arymaptfv.h H = h 1 -aryF X x X h 0 x
2 fveq1 h = F h 0 x = F 0 x
3 2 mpteq2dv h = F x X h 0 x = x X F 0 x
4 eqid 0 ..^ 1 = 0 ..^ 1
5 4 naryrcl h 1 -aryF X 1 0 X V
6 5 simprd h 1 -aryF X X V
7 6 mptexd h 1 -aryF X x X h 0 x V
8 3 1 7 fvmpt3 F 1 -aryF X H F = x X F 0 x