Metamath Proof Explorer


Theorem 1arymaptf

Description: The mapping of unary (endo)functions is a function into the set of endofunctions. (Contributed by AV, 18-May-2024)

Ref Expression
Hypothesis 1arymaptfv.h 𝐻 = ( ∈ ( 1 -aryF 𝑋 ) ↦ ( 𝑥𝑋 ↦ ( ‘ { ⟨ 0 , 𝑥 ⟩ } ) ) )
Assertion 1arymaptf ( 𝑋𝑉𝐻 : ( 1 -aryF 𝑋 ) ⟶ ( 𝑋m 𝑋 ) )

Proof

Step Hyp Ref Expression
1 1arymaptfv.h 𝐻 = ( ∈ ( 1 -aryF 𝑋 ) ↦ ( 𝑥𝑋 ↦ ( ‘ { ⟨ 0 , 𝑥 ⟩ } ) ) )
2 fv1arycl ( ( ∈ ( 1 -aryF 𝑋 ) ∧ 𝑥𝑋 ) → ( ‘ { ⟨ 0 , 𝑥 ⟩ } ) ∈ 𝑋 )
3 2 adantll ( ( ( 𝑋𝑉 ∈ ( 1 -aryF 𝑋 ) ) ∧ 𝑥𝑋 ) → ( ‘ { ⟨ 0 , 𝑥 ⟩ } ) ∈ 𝑋 )
4 3 fmpttd ( ( 𝑋𝑉 ∈ ( 1 -aryF 𝑋 ) ) → ( 𝑥𝑋 ↦ ( ‘ { ⟨ 0 , 𝑥 ⟩ } ) ) : 𝑋𝑋 )
5 simpl ( ( 𝑋𝑉 ∈ ( 1 -aryF 𝑋 ) ) → 𝑋𝑉 )
6 5 5 elmapd ( ( 𝑋𝑉 ∈ ( 1 -aryF 𝑋 ) ) → ( ( 𝑥𝑋 ↦ ( ‘ { ⟨ 0 , 𝑥 ⟩ } ) ) ∈ ( 𝑋m 𝑋 ) ↔ ( 𝑥𝑋 ↦ ( ‘ { ⟨ 0 , 𝑥 ⟩ } ) ) : 𝑋𝑋 ) )
7 4 6 mpbird ( ( 𝑋𝑉 ∈ ( 1 -aryF 𝑋 ) ) → ( 𝑥𝑋 ↦ ( ‘ { ⟨ 0 , 𝑥 ⟩ } ) ) ∈ ( 𝑋m 𝑋 ) )
8 7 1 fmptd ( 𝑋𝑉𝐻 : ( 1 -aryF 𝑋 ) ⟶ ( 𝑋m 𝑋 ) )