Metamath Proof Explorer


Theorem 1cossxrncnvepresex

Description: Sufficient condition for a restricted converse epsilon range Cartesian product to be a set. (Contributed by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion 1cossxrncnvepresex
|- ( ( A e. V /\ R e. W ) -> ,~ ( R |X. ( `' _E |` A ) ) e. _V )

Proof

Step Hyp Ref Expression
1 xrncnvepresex
 |-  ( ( A e. V /\ R e. W ) -> ( R |X. ( `' _E |` A ) ) e. _V )
2 cossex
 |-  ( ( R |X. ( `' _E |` A ) ) e. _V -> ,~ ( R |X. ( `' _E |` A ) ) e. _V )
3 1 2 syl
 |-  ( ( A e. V /\ R e. W ) -> ,~ ( R |X. ( `' _E |` A ) ) e. _V )