| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1wlkd.p |  |-  P = <" X Y "> | 
						
							| 2 |  | 1wlkd.f |  |-  F = <" J "> | 
						
							| 3 | 2 | fveq2i |  |-  ( # ` F ) = ( # ` <" J "> ) | 
						
							| 4 |  | s1len |  |-  ( # ` <" J "> ) = 1 | 
						
							| 5 | 3 4 | eqtri |  |-  ( # ` F ) = 1 | 
						
							| 6 | 5 | oveq2i |  |-  ( 1 ..^ ( # ` F ) ) = ( 1 ..^ 1 ) | 
						
							| 7 |  | fzo0 |  |-  ( 1 ..^ 1 ) = (/) | 
						
							| 8 | 6 7 | eqtri |  |-  ( 1 ..^ ( # ` F ) ) = (/) | 
						
							| 9 | 8 | imaeq2i |  |-  ( P " ( 1 ..^ ( # ` F ) ) ) = ( P " (/) ) | 
						
							| 10 | 9 | ineq2i |  |-  ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = ( ( P " { 0 , ( # ` F ) } ) i^i ( P " (/) ) ) | 
						
							| 11 |  | ima0 |  |-  ( P " (/) ) = (/) | 
						
							| 12 | 11 | ineq2i |  |-  ( ( P " { 0 , ( # ` F ) } ) i^i ( P " (/) ) ) = ( ( P " { 0 , ( # ` F ) } ) i^i (/) ) | 
						
							| 13 |  | in0 |  |-  ( ( P " { 0 , ( # ` F ) } ) i^i (/) ) = (/) | 
						
							| 14 | 12 13 | eqtri |  |-  ( ( P " { 0 , ( # ` F ) } ) i^i ( P " (/) ) ) = (/) | 
						
							| 15 | 10 14 | eqtri |  |-  ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) |