Metamath Proof Explorer


Theorem 1wlkdlem1

Description: Lemma 1 for 1wlkd . (Contributed by AV, 22-Jan-2021)

Ref Expression
Hypotheses 1wlkd.p
|- P = <" X Y ">
1wlkd.f
|- F = <" J ">
1wlkd.x
|- ( ph -> X e. V )
1wlkd.y
|- ( ph -> Y e. V )
Assertion 1wlkdlem1
|- ( ph -> P : ( 0 ... ( # ` F ) ) --> V )

Proof

Step Hyp Ref Expression
1 1wlkd.p
 |-  P = <" X Y ">
2 1wlkd.f
 |-  F = <" J ">
3 1wlkd.x
 |-  ( ph -> X e. V )
4 1wlkd.y
 |-  ( ph -> Y e. V )
5 3 4 s2cld
 |-  ( ph -> <" X Y "> e. Word V )
6 wrdf
 |-  ( <" X Y "> e. Word V -> <" X Y "> : ( 0 ..^ ( # ` <" X Y "> ) ) --> V )
7 1z
 |-  1 e. ZZ
8 fzval3
 |-  ( 1 e. ZZ -> ( 0 ... 1 ) = ( 0 ..^ ( 1 + 1 ) ) )
9 7 8 ax-mp
 |-  ( 0 ... 1 ) = ( 0 ..^ ( 1 + 1 ) )
10 2 fveq2i
 |-  ( # ` F ) = ( # ` <" J "> )
11 s1len
 |-  ( # ` <" J "> ) = 1
12 10 11 eqtri
 |-  ( # ` F ) = 1
13 12 oveq2i
 |-  ( 0 ... ( # ` F ) ) = ( 0 ... 1 )
14 s2len
 |-  ( # ` <" X Y "> ) = 2
15 df-2
 |-  2 = ( 1 + 1 )
16 14 15 eqtri
 |-  ( # ` <" X Y "> ) = ( 1 + 1 )
17 16 oveq2i
 |-  ( 0 ..^ ( # ` <" X Y "> ) ) = ( 0 ..^ ( 1 + 1 ) )
18 9 13 17 3eqtr4i
 |-  ( 0 ... ( # ` F ) ) = ( 0 ..^ ( # ` <" X Y "> ) )
19 18 a1i
 |-  ( <" X Y "> e. Word V -> ( 0 ... ( # ` F ) ) = ( 0 ..^ ( # ` <" X Y "> ) ) )
20 19 feq2d
 |-  ( <" X Y "> e. Word V -> ( <" X Y "> : ( 0 ... ( # ` F ) ) --> V <-> <" X Y "> : ( 0 ..^ ( # ` <" X Y "> ) ) --> V ) )
21 6 20 mpbird
 |-  ( <" X Y "> e. Word V -> <" X Y "> : ( 0 ... ( # ` F ) ) --> V )
22 5 21 syl
 |-  ( ph -> <" X Y "> : ( 0 ... ( # ` F ) ) --> V )
23 1 feq1i
 |-  ( P : ( 0 ... ( # ` F ) ) --> V <-> <" X Y "> : ( 0 ... ( # ` F ) ) --> V )
24 22 23 sylibr
 |-  ( ph -> P : ( 0 ... ( # ` F ) ) --> V )