Metamath Proof Explorer


Theorem 1strstr1

Description: A constructed one-slot structure. (Contributed by AV, 15-Nov-2024)

Ref Expression
Hypothesis 1str.g
|- G = { <. ( Base ` ndx ) , B >. }
Assertion 1strstr1
|- G Struct <. ( Base ` ndx ) , ( Base ` ndx ) >.

Proof

Step Hyp Ref Expression
1 1str.g
 |-  G = { <. ( Base ` ndx ) , B >. }
2 basendxnn
 |-  ( Base ` ndx ) e. NN
3 eqid
 |-  ( Base ` ndx ) = ( Base ` ndx )
4 2 3 strle1
 |-  { <. ( Base ` ndx ) , B >. } Struct <. ( Base ` ndx ) , ( Base ` ndx ) >.
5 1 4 eqbrtri
 |-  G Struct <. ( Base ` ndx ) , ( Base ` ndx ) >.