| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltso |  |-  < Or RR | 
						
							| 2 |  | suppr |  |-  ( ( < Or RR /\ A e. RR /\ B e. RR ) -> sup ( { A , B } , RR , < ) = if ( B < A , A , B ) ) | 
						
							| 3 | 1 2 | mp3an1 |  |-  ( ( A e. RR /\ B e. RR ) -> sup ( { A , B } , RR , < ) = if ( B < A , A , B ) ) | 
						
							| 4 |  | ifnot |  |-  if ( -. B < A , B , A ) = if ( B < A , A , B ) | 
						
							| 5 |  | lenlt |  |-  ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> -. B < A ) ) | 
						
							| 6 | 5 | bicomd |  |-  ( ( A e. RR /\ B e. RR ) -> ( -. B < A <-> A <_ B ) ) | 
						
							| 7 | 6 | ifbid |  |-  ( ( A e. RR /\ B e. RR ) -> if ( -. B < A , B , A ) = if ( A <_ B , B , A ) ) | 
						
							| 8 | 4 7 | eqtr3id |  |-  ( ( A e. RR /\ B e. RR ) -> if ( B < A , A , B ) = if ( A <_ B , B , A ) ) | 
						
							| 9 | 3 8 | eqtrd |  |-  ( ( A e. RR /\ B e. RR ) -> sup ( { A , B } , RR , < ) = if ( A <_ B , B , A ) ) |