Step |
Hyp |
Ref |
Expression |
1 |
|
ltso |
|- < Or RR |
2 |
|
suppr |
|- ( ( < Or RR /\ A e. RR /\ B e. RR ) -> sup ( { A , B } , RR , < ) = if ( B < A , A , B ) ) |
3 |
1 2
|
mp3an1 |
|- ( ( A e. RR /\ B e. RR ) -> sup ( { A , B } , RR , < ) = if ( B < A , A , B ) ) |
4 |
|
ifnot |
|- if ( -. B < A , B , A ) = if ( B < A , A , B ) |
5 |
|
lenlt |
|- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> -. B < A ) ) |
6 |
5
|
bicomd |
|- ( ( A e. RR /\ B e. RR ) -> ( -. B < A <-> A <_ B ) ) |
7 |
6
|
ifbid |
|- ( ( A e. RR /\ B e. RR ) -> if ( -. B < A , B , A ) = if ( A <_ B , B , A ) ) |
8 |
4 7
|
eqtr3id |
|- ( ( A e. RR /\ B e. RR ) -> if ( B < A , A , B ) = if ( A <_ B , B , A ) ) |
9 |
3 8
|
eqtrd |
|- ( ( A e. RR /\ B e. RR ) -> sup ( { A , B } , RR , < ) = if ( A <_ B , B , A ) ) |