| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 2 |  | suppr | ⊢ ( (  <   Or  ℝ  ∧  𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  sup ( { 𝐴 ,  𝐵 } ,  ℝ ,   <  )  =  if ( 𝐵  <  𝐴 ,  𝐴 ,  𝐵 ) ) | 
						
							| 3 | 1 2 | mp3an1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  sup ( { 𝐴 ,  𝐵 } ,  ℝ ,   <  )  =  if ( 𝐵  <  𝐴 ,  𝐴 ,  𝐵 ) ) | 
						
							| 4 |  | ifnot | ⊢ if ( ¬  𝐵  <  𝐴 ,  𝐵 ,  𝐴 )  =  if ( 𝐵  <  𝐴 ,  𝐴 ,  𝐵 ) | 
						
							| 5 |  | lenlt | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ≤  𝐵  ↔  ¬  𝐵  <  𝐴 ) ) | 
						
							| 6 | 5 | bicomd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ¬  𝐵  <  𝐴  ↔  𝐴  ≤  𝐵 ) ) | 
						
							| 7 | 6 | ifbid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  if ( ¬  𝐵  <  𝐴 ,  𝐵 ,  𝐴 )  =  if ( 𝐴  ≤  𝐵 ,  𝐵 ,  𝐴 ) ) | 
						
							| 8 | 4 7 | eqtr3id | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  if ( 𝐵  <  𝐴 ,  𝐴 ,  𝐵 )  =  if ( 𝐴  ≤  𝐵 ,  𝐵 ,  𝐴 ) ) | 
						
							| 9 | 3 8 | eqtrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  sup ( { 𝐴 ,  𝐵 } ,  ℝ ,   <  )  =  if ( 𝐴  ≤  𝐵 ,  𝐵 ,  𝐴 ) ) |