Metamath Proof Explorer


Theorem 2resupmax

Description: The supremum of two real numbers is the maximum of these two numbers. (Contributed by AV, 8-Jun-2021)

Ref Expression
Assertion 2resupmax ABsupAB<=ifABBA

Proof

Step Hyp Ref Expression
1 ltso <Or
2 suppr <OrABsupAB<=ifB<AAB
3 1 2 mp3an1 ABsupAB<=ifB<AAB
4 ifnot if¬B<ABA=ifB<AAB
5 lenlt ABAB¬B<A
6 5 bicomd AB¬B<AAB
7 6 ifbid ABif¬B<ABA=ifABBA
8 4 7 eqtr3id ABifB<AAB=ifABBA
9 3 8 eqtrd ABsupAB<=ifABBA