Step |
Hyp |
Ref |
Expression |
1 |
|
2sq.1 |
|- S = ran ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) ) |
2 |
1
|
eleq2i |
|- ( A e. S <-> A e. ran ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) ) ) |
3 |
|
fveq2 |
|- ( w = x -> ( abs ` w ) = ( abs ` x ) ) |
4 |
3
|
oveq1d |
|- ( w = x -> ( ( abs ` w ) ^ 2 ) = ( ( abs ` x ) ^ 2 ) ) |
5 |
4
|
cbvmptv |
|- ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) ) = ( x e. Z[i] |-> ( ( abs ` x ) ^ 2 ) ) |
6 |
|
ovex |
|- ( ( abs ` x ) ^ 2 ) e. _V |
7 |
5 6
|
elrnmpti |
|- ( A e. ran ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) ) <-> E. x e. Z[i] A = ( ( abs ` x ) ^ 2 ) ) |
8 |
2 7
|
bitri |
|- ( A e. S <-> E. x e. Z[i] A = ( ( abs ` x ) ^ 2 ) ) |