Metamath Proof Explorer


Theorem 2sqlem1

Description: Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015)

Ref Expression
Hypothesis 2sq.1
|- S = ran ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) )
Assertion 2sqlem1
|- ( A e. S <-> E. x e. Z[i] A = ( ( abs ` x ) ^ 2 ) )

Proof

Step Hyp Ref Expression
1 2sq.1
 |-  S = ran ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) )
2 1 eleq2i
 |-  ( A e. S <-> A e. ran ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) ) )
3 fveq2
 |-  ( w = x -> ( abs ` w ) = ( abs ` x ) )
4 3 oveq1d
 |-  ( w = x -> ( ( abs ` w ) ^ 2 ) = ( ( abs ` x ) ^ 2 ) )
5 4 cbvmptv
 |-  ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) ) = ( x e. Z[i] |-> ( ( abs ` x ) ^ 2 ) )
6 ovex
 |-  ( ( abs ` x ) ^ 2 ) e. _V
7 5 6 elrnmpti
 |-  ( A e. ran ( w e. Z[i] |-> ( ( abs ` w ) ^ 2 ) ) <-> E. x e. Z[i] A = ( ( abs ` x ) ^ 2 ) )
8 2 7 bitri
 |-  ( A e. S <-> E. x e. Z[i] A = ( ( abs ` x ) ^ 2 ) )