Description: Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3adantlr3.1 | |- ( ( ( ph /\ ( ps /\ ch ) ) /\ th ) -> ta ) |
|
| Assertion | 3adantlr3 | |- ( ( ( ph /\ ( ps /\ ch /\ et ) ) /\ th ) -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adantlr3.1 | |- ( ( ( ph /\ ( ps /\ ch ) ) /\ th ) -> ta ) |
|
| 2 | simpll | |- ( ( ( ph /\ ( ps /\ ch /\ et ) ) /\ th ) -> ph ) |
|
| 3 | simplr1 | |- ( ( ( ph /\ ( ps /\ ch /\ et ) ) /\ th ) -> ps ) |
|
| 4 | simplr2 | |- ( ( ( ph /\ ( ps /\ ch /\ et ) ) /\ th ) -> ch ) |
|
| 5 | 3 4 | jca | |- ( ( ( ph /\ ( ps /\ ch /\ et ) ) /\ th ) -> ( ps /\ ch ) ) |
| 6 | simpr | |- ( ( ( ph /\ ( ps /\ ch /\ et ) ) /\ th ) -> th ) |
|
| 7 | 2 5 6 1 | syl21anc | |- ( ( ( ph /\ ( ps /\ ch /\ et ) ) /\ th ) -> ta ) |