| Step | Hyp | Ref | Expression | 
						
							| 1 |  | or4 |  |-  ( ( ( ( ph \/ ch ) \/ ta ) \/ ( ( ps \/ th ) \/ et ) ) <-> ( ( ( ph \/ ch ) \/ ( ps \/ th ) ) \/ ( ta \/ et ) ) ) | 
						
							| 2 |  | or4 |  |-  ( ( ( ph \/ ch ) \/ ( ps \/ th ) ) <-> ( ( ph \/ ps ) \/ ( ch \/ th ) ) ) | 
						
							| 3 | 2 | orbi1i |  |-  ( ( ( ( ph \/ ch ) \/ ( ps \/ th ) ) \/ ( ta \/ et ) ) <-> ( ( ( ph \/ ps ) \/ ( ch \/ th ) ) \/ ( ta \/ et ) ) ) | 
						
							| 4 | 1 3 | bitr2i |  |-  ( ( ( ( ph \/ ps ) \/ ( ch \/ th ) ) \/ ( ta \/ et ) ) <-> ( ( ( ph \/ ch ) \/ ta ) \/ ( ( ps \/ th ) \/ et ) ) ) | 
						
							| 5 |  | df-3or |  |-  ( ( ( ph \/ ps ) \/ ( ch \/ th ) \/ ( ta \/ et ) ) <-> ( ( ( ph \/ ps ) \/ ( ch \/ th ) ) \/ ( ta \/ et ) ) ) | 
						
							| 6 |  | df-3or |  |-  ( ( ph \/ ch \/ ta ) <-> ( ( ph \/ ch ) \/ ta ) ) | 
						
							| 7 |  | df-3or |  |-  ( ( ps \/ th \/ et ) <-> ( ( ps \/ th ) \/ et ) ) | 
						
							| 8 | 6 7 | orbi12i |  |-  ( ( ( ph \/ ch \/ ta ) \/ ( ps \/ th \/ et ) ) <-> ( ( ( ph \/ ch ) \/ ta ) \/ ( ( ps \/ th ) \/ et ) ) ) | 
						
							| 9 | 4 5 8 | 3bitr4i |  |-  ( ( ( ph \/ ps ) \/ ( ch \/ th ) \/ ( ta \/ et ) ) <-> ( ( ph \/ ch \/ ta ) \/ ( ps \/ th \/ et ) ) ) |