| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3wlkd.p |
|- P = <" A B C D "> |
| 2 |
|
3wlkd.f |
|- F = <" J K L "> |
| 3 |
|
3wlkd.s |
|- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
| 4 |
|
3wlkd.n |
|- ( ph -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) |
| 5 |
|
3wlkd.e |
|- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) /\ { C , D } C_ ( I ` L ) ) ) |
| 6 |
1 2 3 4 5
|
3wlkdlem8 |
|- ( ph -> ( ( F ` 0 ) = J /\ ( F ` 1 ) = K /\ ( F ` 2 ) = L ) ) |
| 7 |
|
fveq2 |
|- ( ( F ` 0 ) = J -> ( I ` ( F ` 0 ) ) = ( I ` J ) ) |
| 8 |
7
|
sseq2d |
|- ( ( F ` 0 ) = J -> ( { A , B } C_ ( I ` ( F ` 0 ) ) <-> { A , B } C_ ( I ` J ) ) ) |
| 9 |
8
|
3ad2ant1 |
|- ( ( ( F ` 0 ) = J /\ ( F ` 1 ) = K /\ ( F ` 2 ) = L ) -> ( { A , B } C_ ( I ` ( F ` 0 ) ) <-> { A , B } C_ ( I ` J ) ) ) |
| 10 |
|
fveq2 |
|- ( ( F ` 1 ) = K -> ( I ` ( F ` 1 ) ) = ( I ` K ) ) |
| 11 |
10
|
sseq2d |
|- ( ( F ` 1 ) = K -> ( { B , C } C_ ( I ` ( F ` 1 ) ) <-> { B , C } C_ ( I ` K ) ) ) |
| 12 |
11
|
3ad2ant2 |
|- ( ( ( F ` 0 ) = J /\ ( F ` 1 ) = K /\ ( F ` 2 ) = L ) -> ( { B , C } C_ ( I ` ( F ` 1 ) ) <-> { B , C } C_ ( I ` K ) ) ) |
| 13 |
|
fveq2 |
|- ( ( F ` 2 ) = L -> ( I ` ( F ` 2 ) ) = ( I ` L ) ) |
| 14 |
13
|
sseq2d |
|- ( ( F ` 2 ) = L -> ( { C , D } C_ ( I ` ( F ` 2 ) ) <-> { C , D } C_ ( I ` L ) ) ) |
| 15 |
14
|
3ad2ant3 |
|- ( ( ( F ` 0 ) = J /\ ( F ` 1 ) = K /\ ( F ` 2 ) = L ) -> ( { C , D } C_ ( I ` ( F ` 2 ) ) <-> { C , D } C_ ( I ` L ) ) ) |
| 16 |
9 12 15
|
3anbi123d |
|- ( ( ( F ` 0 ) = J /\ ( F ` 1 ) = K /\ ( F ` 2 ) = L ) -> ( ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) /\ { C , D } C_ ( I ` ( F ` 2 ) ) ) <-> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) /\ { C , D } C_ ( I ` L ) ) ) ) |
| 17 |
6 16
|
syl |
|- ( ph -> ( ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) /\ { C , D } C_ ( I ` ( F ` 2 ) ) ) <-> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) /\ { C , D } C_ ( I ` L ) ) ) ) |
| 18 |
5 17
|
mpbird |
|- ( ph -> ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) /\ { C , D } C_ ( I ` ( F ` 2 ) ) ) ) |