Metamath Proof Explorer


Theorem 3wlkdlem9

Description: Lemma 9 for 3wlkd . (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses 3wlkd.p P=⟨“ABCD”⟩
3wlkd.f F=⟨“JKL”⟩
3wlkd.s φAVBVCVDV
3wlkd.n φABACBCBDCD
3wlkd.e φABIJBCIKCDIL
Assertion 3wlkdlem9 φABIF0BCIF1CDIF2

Proof

Step Hyp Ref Expression
1 3wlkd.p P=⟨“ABCD”⟩
2 3wlkd.f F=⟨“JKL”⟩
3 3wlkd.s φAVBVCVDV
4 3wlkd.n φABACBCBDCD
5 3wlkd.e φABIJBCIKCDIL
6 1 2 3 4 5 3wlkdlem8 φF0=JF1=KF2=L
7 fveq2 F0=JIF0=IJ
8 7 sseq2d F0=JABIF0ABIJ
9 8 3ad2ant1 F0=JF1=KF2=LABIF0ABIJ
10 fveq2 F1=KIF1=IK
11 10 sseq2d F1=KBCIF1BCIK
12 11 3ad2ant2 F0=JF1=KF2=LBCIF1BCIK
13 fveq2 F2=LIF2=IL
14 13 sseq2d F2=LCDIF2CDIL
15 14 3ad2ant3 F0=JF1=KF2=LCDIF2CDIL
16 9 12 15 3anbi123d F0=JF1=KF2=LABIF0BCIF1CDIF2ABIJBCIKCDIL
17 6 16 syl φABIF0BCIF1CDIF2ABIJBCIKCDIL
18 5 17 mpbird φABIF0BCIF1CDIF2