Metamath Proof Explorer


Theorem 3wlkdlem8

Description: Lemma 8 for 3wlkd . (Contributed by Alexander van der Vekens, 12-Nov-2017) (Revised by AV, 7-Feb-2021)

Ref Expression
Hypotheses 3wlkd.p
|- P = <" A B C D ">
3wlkd.f
|- F = <" J K L ">
3wlkd.s
|- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) )
3wlkd.n
|- ( ph -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) )
3wlkd.e
|- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) /\ { C , D } C_ ( I ` L ) ) )
Assertion 3wlkdlem8
|- ( ph -> ( ( F ` 0 ) = J /\ ( F ` 1 ) = K /\ ( F ` 2 ) = L ) )

Proof

Step Hyp Ref Expression
1 3wlkd.p
 |-  P = <" A B C D ">
2 3wlkd.f
 |-  F = <" J K L ">
3 3wlkd.s
 |-  ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) )
4 3wlkd.n
 |-  ( ph -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) )
5 3wlkd.e
 |-  ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) /\ { C , D } C_ ( I ` L ) ) )
6 1 2 3 4 5 3wlkdlem7
 |-  ( ph -> ( J e. _V /\ K e. _V /\ L e. _V ) )
7 s3fv0
 |-  ( J e. _V -> ( <" J K L "> ` 0 ) = J )
8 s3fv1
 |-  ( K e. _V -> ( <" J K L "> ` 1 ) = K )
9 s3fv2
 |-  ( L e. _V -> ( <" J K L "> ` 2 ) = L )
10 7 8 9 3anim123i
 |-  ( ( J e. _V /\ K e. _V /\ L e. _V ) -> ( ( <" J K L "> ` 0 ) = J /\ ( <" J K L "> ` 1 ) = K /\ ( <" J K L "> ` 2 ) = L ) )
11 6 10 syl
 |-  ( ph -> ( ( <" J K L "> ` 0 ) = J /\ ( <" J K L "> ` 1 ) = K /\ ( <" J K L "> ` 2 ) = L ) )
12 2 fveq1i
 |-  ( F ` 0 ) = ( <" J K L "> ` 0 )
13 12 eqeq1i
 |-  ( ( F ` 0 ) = J <-> ( <" J K L "> ` 0 ) = J )
14 2 fveq1i
 |-  ( F ` 1 ) = ( <" J K L "> ` 1 )
15 14 eqeq1i
 |-  ( ( F ` 1 ) = K <-> ( <" J K L "> ` 1 ) = K )
16 2 fveq1i
 |-  ( F ` 2 ) = ( <" J K L "> ` 2 )
17 16 eqeq1i
 |-  ( ( F ` 2 ) = L <-> ( <" J K L "> ` 2 ) = L )
18 13 15 17 3anbi123i
 |-  ( ( ( F ` 0 ) = J /\ ( F ` 1 ) = K /\ ( F ` 2 ) = L ) <-> ( ( <" J K L "> ` 0 ) = J /\ ( <" J K L "> ` 1 ) = K /\ ( <" J K L "> ` 2 ) = L ) )
19 11 18 sylibr
 |-  ( ph -> ( ( F ` 0 ) = J /\ ( F ` 1 ) = K /\ ( F ` 2 ) = L ) )