| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negcl |
|- ( B e. CC -> -u B e. CC ) |
| 2 |
|
abstri |
|- ( ( A e. CC /\ -u B e. CC ) -> ( abs ` ( A + -u B ) ) <_ ( ( abs ` A ) + ( abs ` -u B ) ) ) |
| 3 |
1 2
|
sylan2 |
|- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A + -u B ) ) <_ ( ( abs ` A ) + ( abs ` -u B ) ) ) |
| 4 |
|
negsub |
|- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
| 5 |
4
|
fveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A + -u B ) ) = ( abs ` ( A - B ) ) ) |
| 6 |
|
absneg |
|- ( B e. CC -> ( abs ` -u B ) = ( abs ` B ) ) |
| 7 |
6
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( abs ` -u B ) = ( abs ` B ) ) |
| 8 |
7
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) + ( abs ` -u B ) ) = ( ( abs ` A ) + ( abs ` B ) ) ) |
| 9 |
3 5 8
|
3brtr3d |
|- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A - B ) ) <_ ( ( abs ` A ) + ( abs ` B ) ) ) |