| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0red |
|- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> 0 e. RR ) |
| 2 |
|
0le0 |
|- 0 <_ 0 |
| 3 |
2
|
a1i |
|- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> 0 <_ 0 ) |
| 4 |
|
simplr |
|- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> B e. RR ) |
| 5 |
|
recxpcl |
|- ( ( 0 e. RR /\ 0 <_ 0 /\ B e. RR ) -> ( 0 ^c B ) e. RR ) |
| 6 |
1 3 4 5
|
syl3anc |
|- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> ( 0 ^c B ) e. RR ) |
| 7 |
|
cxpge0 |
|- ( ( 0 e. RR /\ 0 <_ 0 /\ B e. RR ) -> 0 <_ ( 0 ^c B ) ) |
| 8 |
1 3 4 7
|
syl3anc |
|- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> 0 <_ ( 0 ^c B ) ) |
| 9 |
6 8
|
absidd |
|- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> ( abs ` ( 0 ^c B ) ) = ( 0 ^c B ) ) |
| 10 |
|
simpr |
|- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> A = 0 ) |
| 11 |
10
|
oveq1d |
|- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> ( A ^c B ) = ( 0 ^c B ) ) |
| 12 |
11
|
fveq2d |
|- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> ( abs ` ( A ^c B ) ) = ( abs ` ( 0 ^c B ) ) ) |
| 13 |
10
|
abs00bd |
|- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> ( abs ` A ) = 0 ) |
| 14 |
13
|
oveq1d |
|- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> ( ( abs ` A ) ^c B ) = ( 0 ^c B ) ) |
| 15 |
9 12 14
|
3eqtr4d |
|- ( ( ( A e. CC /\ B e. RR ) /\ A = 0 ) -> ( abs ` ( A ^c B ) ) = ( ( abs ` A ) ^c B ) ) |
| 16 |
|
simplr |
|- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> B e. RR ) |
| 17 |
16
|
recnd |
|- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> B e. CC ) |
| 18 |
|
logcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
| 19 |
18
|
adantlr |
|- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
| 20 |
17 19
|
mulcld |
|- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( B x. ( log ` A ) ) e. CC ) |
| 21 |
|
absef |
|- ( ( B x. ( log ` A ) ) e. CC -> ( abs ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( exp ` ( Re ` ( B x. ( log ` A ) ) ) ) ) |
| 22 |
20 21
|
syl |
|- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( abs ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( exp ` ( Re ` ( B x. ( log ` A ) ) ) ) ) |
| 23 |
16 19
|
remul2d |
|- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( Re ` ( B x. ( log ` A ) ) ) = ( B x. ( Re ` ( log ` A ) ) ) ) |
| 24 |
|
relog |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) = ( log ` ( abs ` A ) ) ) |
| 25 |
24
|
adantlr |
|- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) = ( log ` ( abs ` A ) ) ) |
| 26 |
25
|
oveq2d |
|- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( B x. ( Re ` ( log ` A ) ) ) = ( B x. ( log ` ( abs ` A ) ) ) ) |
| 27 |
23 26
|
eqtrd |
|- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( Re ` ( B x. ( log ` A ) ) ) = ( B x. ( log ` ( abs ` A ) ) ) ) |
| 28 |
27
|
fveq2d |
|- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( exp ` ( Re ` ( B x. ( log ` A ) ) ) ) = ( exp ` ( B x. ( log ` ( abs ` A ) ) ) ) ) |
| 29 |
22 28
|
eqtrd |
|- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( abs ` ( exp ` ( B x. ( log ` A ) ) ) ) = ( exp ` ( B x. ( log ` ( abs ` A ) ) ) ) ) |
| 30 |
|
simpll |
|- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> A e. CC ) |
| 31 |
|
simpr |
|- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> A =/= 0 ) |
| 32 |
|
cxpef |
|- ( ( A e. CC /\ A =/= 0 /\ B e. CC ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
| 33 |
30 31 17 32
|
syl3anc |
|- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( A ^c B ) = ( exp ` ( B x. ( log ` A ) ) ) ) |
| 34 |
33
|
fveq2d |
|- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( abs ` ( A ^c B ) ) = ( abs ` ( exp ` ( B x. ( log ` A ) ) ) ) ) |
| 35 |
30
|
abscld |
|- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( abs ` A ) e. RR ) |
| 36 |
35
|
recnd |
|- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( abs ` A ) e. CC ) |
| 37 |
|
abs00 |
|- ( A e. CC -> ( ( abs ` A ) = 0 <-> A = 0 ) ) |
| 38 |
37
|
adantr |
|- ( ( A e. CC /\ B e. RR ) -> ( ( abs ` A ) = 0 <-> A = 0 ) ) |
| 39 |
38
|
necon3bid |
|- ( ( A e. CC /\ B e. RR ) -> ( ( abs ` A ) =/= 0 <-> A =/= 0 ) ) |
| 40 |
39
|
biimpar |
|- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( abs ` A ) =/= 0 ) |
| 41 |
|
cxpef |
|- ( ( ( abs ` A ) e. CC /\ ( abs ` A ) =/= 0 /\ B e. CC ) -> ( ( abs ` A ) ^c B ) = ( exp ` ( B x. ( log ` ( abs ` A ) ) ) ) ) |
| 42 |
36 40 17 41
|
syl3anc |
|- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( ( abs ` A ) ^c B ) = ( exp ` ( B x. ( log ` ( abs ` A ) ) ) ) ) |
| 43 |
29 34 42
|
3eqtr4d |
|- ( ( ( A e. CC /\ B e. RR ) /\ A =/= 0 ) -> ( abs ` ( A ^c B ) ) = ( ( abs ` A ) ^c B ) ) |
| 44 |
15 43
|
pm2.61dane |
|- ( ( A e. CC /\ B e. RR ) -> ( abs ` ( A ^c B ) ) = ( ( abs ` A ) ^c B ) ) |