| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( A = ( abs ` A ) -> ( A mod B ) = ( ( abs ` A ) mod B ) ) | 
						
							| 2 | 1 | eqcoms |  |-  ( ( abs ` A ) = A -> ( A mod B ) = ( ( abs ` A ) mod B ) ) | 
						
							| 3 | 2 | eqeq1d |  |-  ( ( abs ` A ) = A -> ( ( A mod B ) = 0 <-> ( ( abs ` A ) mod B ) = 0 ) ) | 
						
							| 4 | 3 | a1i |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( abs ` A ) = A -> ( ( A mod B ) = 0 <-> ( ( abs ` A ) mod B ) = 0 ) ) ) | 
						
							| 5 |  | negmod0 |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = 0 <-> ( -u A mod B ) = 0 ) ) | 
						
							| 6 |  | oveq1 |  |-  ( ( abs ` A ) = -u A -> ( ( abs ` A ) mod B ) = ( -u A mod B ) ) | 
						
							| 7 | 6 | eqeq1d |  |-  ( ( abs ` A ) = -u A -> ( ( ( abs ` A ) mod B ) = 0 <-> ( -u A mod B ) = 0 ) ) | 
						
							| 8 | 7 | bibi2d |  |-  ( ( abs ` A ) = -u A -> ( ( ( A mod B ) = 0 <-> ( ( abs ` A ) mod B ) = 0 ) <-> ( ( A mod B ) = 0 <-> ( -u A mod B ) = 0 ) ) ) | 
						
							| 9 | 5 8 | syl5ibrcom |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( abs ` A ) = -u A -> ( ( A mod B ) = 0 <-> ( ( abs ` A ) mod B ) = 0 ) ) ) | 
						
							| 10 |  | absor |  |-  ( A e. RR -> ( ( abs ` A ) = A \/ ( abs ` A ) = -u A ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( abs ` A ) = A \/ ( abs ` A ) = -u A ) ) | 
						
							| 12 | 4 9 11 | mpjaod |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = 0 <-> ( ( abs ` A ) mod B ) = 0 ) ) |