| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rerpdivcl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
| 2 |
|
recn |
|- ( ( A / B ) e. RR -> ( A / B ) e. CC ) |
| 3 |
|
znegclb |
|- ( ( A / B ) e. CC -> ( ( A / B ) e. ZZ <-> -u ( A / B ) e. ZZ ) ) |
| 4 |
1 2 3
|
3syl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) e. ZZ <-> -u ( A / B ) e. ZZ ) ) |
| 5 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 6 |
5
|
adantr |
|- ( ( A e. RR /\ B e. RR+ ) -> A e. CC ) |
| 7 |
|
rpcn |
|- ( B e. RR+ -> B e. CC ) |
| 8 |
7
|
adantl |
|- ( ( A e. RR /\ B e. RR+ ) -> B e. CC ) |
| 9 |
|
rpne0 |
|- ( B e. RR+ -> B =/= 0 ) |
| 10 |
9
|
adantl |
|- ( ( A e. RR /\ B e. RR+ ) -> B =/= 0 ) |
| 11 |
6 8 10
|
divnegd |
|- ( ( A e. RR /\ B e. RR+ ) -> -u ( A / B ) = ( -u A / B ) ) |
| 12 |
11
|
eleq1d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( -u ( A / B ) e. ZZ <-> ( -u A / B ) e. ZZ ) ) |
| 13 |
4 12
|
bitrd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) e. ZZ <-> ( -u A / B ) e. ZZ ) ) |
| 14 |
|
mod0 |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = 0 <-> ( A / B ) e. ZZ ) ) |
| 15 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
| 16 |
|
mod0 |
|- ( ( -u A e. RR /\ B e. RR+ ) -> ( ( -u A mod B ) = 0 <-> ( -u A / B ) e. ZZ ) ) |
| 17 |
15 16
|
sylan |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( -u A mod B ) = 0 <-> ( -u A / B ) e. ZZ ) ) |
| 18 |
13 14 17
|
3bitr4d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = 0 <-> ( -u A mod B ) = 0 ) ) |