Description: A is divisible by B iff its negative is. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Fan Zheng, 7-Jun-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | negmod0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rerpdivcl | |
|
2 | recn | |
|
3 | znegclb | |
|
4 | 1 2 3 | 3syl | |
5 | recn | |
|
6 | 5 | adantr | |
7 | rpcn | |
|
8 | 7 | adantl | |
9 | rpne0 | |
|
10 | 9 | adantl | |
11 | 6 8 10 | divnegd | |
12 | 11 | eleq1d | |
13 | 4 12 | bitrd | |
14 | mod0 | |
|
15 | renegcl | |
|
16 | mod0 | |
|
17 | 15 16 | sylan | |
18 | 13 14 17 | 3bitr4d | |