| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 | ⊢ ( 𝐴  =  ( abs ‘ 𝐴 )  →  ( 𝐴  mod  𝐵 )  =  ( ( abs ‘ 𝐴 )  mod  𝐵 ) ) | 
						
							| 2 | 1 | eqcoms | ⊢ ( ( abs ‘ 𝐴 )  =  𝐴  →  ( 𝐴  mod  𝐵 )  =  ( ( abs ‘ 𝐴 )  mod  𝐵 ) ) | 
						
							| 3 | 2 | eqeq1d | ⊢ ( ( abs ‘ 𝐴 )  =  𝐴  →  ( ( 𝐴  mod  𝐵 )  =  0  ↔  ( ( abs ‘ 𝐴 )  mod  𝐵 )  =  0 ) ) | 
						
							| 4 | 3 | a1i | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( abs ‘ 𝐴 )  =  𝐴  →  ( ( 𝐴  mod  𝐵 )  =  0  ↔  ( ( abs ‘ 𝐴 )  mod  𝐵 )  =  0 ) ) ) | 
						
							| 5 |  | negmod0 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  mod  𝐵 )  =  0  ↔  ( - 𝐴  mod  𝐵 )  =  0 ) ) | 
						
							| 6 |  | oveq1 | ⊢ ( ( abs ‘ 𝐴 )  =  - 𝐴  →  ( ( abs ‘ 𝐴 )  mod  𝐵 )  =  ( - 𝐴  mod  𝐵 ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( ( abs ‘ 𝐴 )  =  - 𝐴  →  ( ( ( abs ‘ 𝐴 )  mod  𝐵 )  =  0  ↔  ( - 𝐴  mod  𝐵 )  =  0 ) ) | 
						
							| 8 | 7 | bibi2d | ⊢ ( ( abs ‘ 𝐴 )  =  - 𝐴  →  ( ( ( 𝐴  mod  𝐵 )  =  0  ↔  ( ( abs ‘ 𝐴 )  mod  𝐵 )  =  0 )  ↔  ( ( 𝐴  mod  𝐵 )  =  0  ↔  ( - 𝐴  mod  𝐵 )  =  0 ) ) ) | 
						
							| 9 | 5 8 | syl5ibrcom | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( abs ‘ 𝐴 )  =  - 𝐴  →  ( ( 𝐴  mod  𝐵 )  =  0  ↔  ( ( abs ‘ 𝐴 )  mod  𝐵 )  =  0 ) ) ) | 
						
							| 10 |  | absor | ⊢ ( 𝐴  ∈  ℝ  →  ( ( abs ‘ 𝐴 )  =  𝐴  ∨  ( abs ‘ 𝐴 )  =  - 𝐴 ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( abs ‘ 𝐴 )  =  𝐴  ∨  ( abs ‘ 𝐴 )  =  - 𝐴 ) ) | 
						
							| 12 | 4 9 11 | mpjaod | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  mod  𝐵 )  =  0  ↔  ( ( abs ‘ 𝐴 )  mod  𝐵 )  =  0 ) ) |