Metamath Proof Explorer


Theorem acnen

Description: The class of choice sets of length A is a cardinal invariant. (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion acnen
|- ( A ~~ B -> AC_ A = AC_ B )

Proof

Step Hyp Ref Expression
1 ensym
 |-  ( A ~~ B -> B ~~ A )
2 endom
 |-  ( B ~~ A -> B ~<_ A )
3 acndom
 |-  ( B ~<_ A -> ( x e. AC_ A -> x e. AC_ B ) )
4 1 2 3 3syl
 |-  ( A ~~ B -> ( x e. AC_ A -> x e. AC_ B ) )
5 endom
 |-  ( A ~~ B -> A ~<_ B )
6 acndom
 |-  ( A ~<_ B -> ( x e. AC_ B -> x e. AC_ A ) )
7 5 6 syl
 |-  ( A ~~ B -> ( x e. AC_ B -> x e. AC_ A ) )
8 4 7 impbid
 |-  ( A ~~ B -> ( x e. AC_ A <-> x e. AC_ B ) )
9 8 eqrdv
 |-  ( A ~~ B -> AC_ A = AC_ B )