Description: Domain and codoamin of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acosf | |- arccos : CC --> CC |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-acos | |- arccos = ( x e. CC |-> ( ( _pi / 2 ) - ( arcsin ` x ) ) ) |
|
| 2 | picn | |- _pi e. CC |
|
| 3 | halfcl | |- ( _pi e. CC -> ( _pi / 2 ) e. CC ) |
|
| 4 | 2 3 | ax-mp | |- ( _pi / 2 ) e. CC |
| 5 | asincl | |- ( x e. CC -> ( arcsin ` x ) e. CC ) |
|
| 6 | subcl | |- ( ( ( _pi / 2 ) e. CC /\ ( arcsin ` x ) e. CC ) -> ( ( _pi / 2 ) - ( arcsin ` x ) ) e. CC ) |
|
| 7 | 4 5 6 | sylancr | |- ( x e. CC -> ( ( _pi / 2 ) - ( arcsin ` x ) ) e. CC ) |
| 8 | 1 7 | fmpti | |- arccos : CC --> CC |