Step |
Hyp |
Ref |
Expression |
1 |
|
ioran |
|- ( -. ( ( F '''' A ) = (/) \/ ( F '''' A ) e/ ran F ) <-> ( -. ( F '''' A ) = (/) /\ -. ( F '''' A ) e/ ran F ) ) |
2 |
|
nnel |
|- ( -. ( F '''' A ) e/ ran F <-> ( F '''' A ) e. ran F ) |
3 |
|
afv2rnfveq |
|- ( ( F '''' A ) e. ran F -> ( F '''' A ) = ( F ` A ) ) |
4 |
2 3
|
sylbi |
|- ( -. ( F '''' A ) e/ ran F -> ( F '''' A ) = ( F ` A ) ) |
5 |
4
|
eqeq1d |
|- ( -. ( F '''' A ) e/ ran F -> ( ( F '''' A ) = (/) <-> ( F ` A ) = (/) ) ) |
6 |
5
|
notbid |
|- ( -. ( F '''' A ) e/ ran F -> ( -. ( F '''' A ) = (/) <-> -. ( F ` A ) = (/) ) ) |
7 |
6
|
biimpac |
|- ( ( -. ( F '''' A ) = (/) /\ -. ( F '''' A ) e/ ran F ) -> -. ( F ` A ) = (/) ) |
8 |
1 7
|
sylbi |
|- ( -. ( ( F '''' A ) = (/) \/ ( F '''' A ) e/ ran F ) -> -. ( F ` A ) = (/) ) |
9 |
8
|
con4i |
|- ( ( F ` A ) = (/) -> ( ( F '''' A ) = (/) \/ ( F '''' A ) e/ ran F ) ) |