Metamath Proof Explorer


Theorem afv2fv0

Description: If the function's value at an argument is the empty set, then the alternate function value at this argument is the empty set or undefined. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv2fv0
|- ( ( F ` A ) = (/) -> ( ( F '''' A ) = (/) \/ ( F '''' A ) e/ ran F ) )

Proof

Step Hyp Ref Expression
1 ioran
 |-  ( -. ( ( F '''' A ) = (/) \/ ( F '''' A ) e/ ran F ) <-> ( -. ( F '''' A ) = (/) /\ -. ( F '''' A ) e/ ran F ) )
2 nnel
 |-  ( -. ( F '''' A ) e/ ran F <-> ( F '''' A ) e. ran F )
3 afv2rnfveq
 |-  ( ( F '''' A ) e. ran F -> ( F '''' A ) = ( F ` A ) )
4 2 3 sylbi
 |-  ( -. ( F '''' A ) e/ ran F -> ( F '''' A ) = ( F ` A ) )
5 4 eqeq1d
 |-  ( -. ( F '''' A ) e/ ran F -> ( ( F '''' A ) = (/) <-> ( F ` A ) = (/) ) )
6 5 notbid
 |-  ( -. ( F '''' A ) e/ ran F -> ( -. ( F '''' A ) = (/) <-> -. ( F ` A ) = (/) ) )
7 6 biimpac
 |-  ( ( -. ( F '''' A ) = (/) /\ -. ( F '''' A ) e/ ran F ) -> -. ( F ` A ) = (/) )
8 1 7 sylbi
 |-  ( -. ( ( F '''' A ) = (/) \/ ( F '''' A ) e/ ran F ) -> -. ( F ` A ) = (/) )
9 8 con4i
 |-  ( ( F ` A ) = (/) -> ( ( F '''' A ) = (/) \/ ( F '''' A ) e/ ran F ) )