| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ioran |  |-  ( -. ( ( F '''' A ) = (/) \/ ( F '''' A ) e/ ran F ) <-> ( -. ( F '''' A ) = (/) /\ -. ( F '''' A ) e/ ran F ) ) | 
						
							| 2 |  | nnel |  |-  ( -. ( F '''' A ) e/ ran F <-> ( F '''' A ) e. ran F ) | 
						
							| 3 |  | afv2rnfveq |  |-  ( ( F '''' A ) e. ran F -> ( F '''' A ) = ( F ` A ) ) | 
						
							| 4 | 2 3 | sylbi |  |-  ( -. ( F '''' A ) e/ ran F -> ( F '''' A ) = ( F ` A ) ) | 
						
							| 5 | 4 | eqeq1d |  |-  ( -. ( F '''' A ) e/ ran F -> ( ( F '''' A ) = (/) <-> ( F ` A ) = (/) ) ) | 
						
							| 6 | 5 | notbid |  |-  ( -. ( F '''' A ) e/ ran F -> ( -. ( F '''' A ) = (/) <-> -. ( F ` A ) = (/) ) ) | 
						
							| 7 | 6 | biimpac |  |-  ( ( -. ( F '''' A ) = (/) /\ -. ( F '''' A ) e/ ran F ) -> -. ( F ` A ) = (/) ) | 
						
							| 8 | 1 7 | sylbi |  |-  ( -. ( ( F '''' A ) = (/) \/ ( F '''' A ) e/ ran F ) -> -. ( F ` A ) = (/) ) | 
						
							| 9 | 8 | con4i |  |-  ( ( F ` A ) = (/) -> ( ( F '''' A ) = (/) \/ ( F '''' A ) e/ ran F ) ) |