Metamath Proof Explorer


Theorem afv2fv0

Description: If the function's value at an argument is the empty set, then the alternate function value at this argument is the empty set or undefined. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv2fv0 F A = F '''' A = F '''' A ran F

Proof

Step Hyp Ref Expression
1 ioran ¬ F '''' A = F '''' A ran F ¬ F '''' A = ¬ F '''' A ran F
2 nnel ¬ F '''' A ran F F '''' A ran F
3 afv2rnfveq F '''' A ran F F '''' A = F A
4 2 3 sylbi ¬ F '''' A ran F F '''' A = F A
5 4 eqeq1d ¬ F '''' A ran F F '''' A = F A =
6 5 notbid ¬ F '''' A ran F ¬ F '''' A = ¬ F A =
7 6 biimpac ¬ F '''' A = ¬ F '''' A ran F ¬ F A =
8 1 7 sylbi ¬ F '''' A = F '''' A ran F ¬ F A =
9 8 con4i F A = F '''' A = F '''' A ran F