Metamath Proof Explorer


Theorem afv2fv0b

Description: The function's value at an argument is the empty set if and only if the alternate function value at this argument is the empty set or undefined. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv2fv0b FA=F''''A=F''''AranF

Proof

Step Hyp Ref Expression
1 afv2fv0 FA=F''''A=F''''AranF
2 afv20fv0 F''''A=FA=
3 afv2ndeffv0 F''''AranFFA=
4 2 3 jaoi F''''A=F''''AranFFA=
5 1 4 impbii FA=F''''A=F''''AranF