Metamath Proof Explorer


Theorem afv2ndeffv0

Description: If the alternate function value at an argument is undefined, i.e., not in the range of the function, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv2ndeffv0 F '''' A ran F F A =

Proof

Step Hyp Ref Expression
1 df-nel F '''' A ran F ¬ F '''' A ran F
2 dfatafv2rnb F defAt A F '''' A ran F
3 df-dfat F defAt A A dom F Fun F A
4 2 3 bitr3i F '''' A ran F A dom F Fun F A
5 4 notbii ¬ F '''' A ran F ¬ A dom F Fun F A
6 ianor ¬ A dom F Fun F A ¬ A dom F ¬ Fun F A
7 1 5 6 3bitri F '''' A ran F ¬ A dom F ¬ Fun F A
8 ndmfv ¬ A dom F F A =
9 nfunsn ¬ Fun F A F A =
10 8 9 jaoi ¬ A dom F ¬ Fun F A F A =
11 7 10 sylbi F '''' A ran F F A =