| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-nel |
⊢ ( ( 𝐹 '''' 𝐴 ) ∉ ran 𝐹 ↔ ¬ ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 ) |
| 2 |
|
dfatafv2rnb |
⊢ ( 𝐹 defAt 𝐴 ↔ ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 ) |
| 3 |
|
df-dfat |
⊢ ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
| 4 |
2 3
|
bitr3i |
⊢ ( ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
| 5 |
4
|
notbii |
⊢ ( ¬ ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 ↔ ¬ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
| 6 |
|
ianor |
⊢ ( ¬ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ↔ ( ¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
| 7 |
1 5 6
|
3bitri |
⊢ ( ( 𝐹 '''' 𝐴 ) ∉ ran 𝐹 ↔ ( ¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
| 8 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 9 |
|
nfunsn |
⊢ ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 10 |
8 9
|
jaoi |
⊢ ( ( ¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
| 11 |
7 10
|
sylbi |
⊢ ( ( 𝐹 '''' 𝐴 ) ∉ ran 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∅ ) |