| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-nel | ⊢ ( ( 𝐹 '''' 𝐴 )  ∉  ran  𝐹  ↔  ¬  ( 𝐹 '''' 𝐴 )  ∈  ran  𝐹 ) | 
						
							| 2 |  | dfatafv2rnb | ⊢ ( 𝐹  defAt  𝐴  ↔  ( 𝐹 '''' 𝐴 )  ∈  ran  𝐹 ) | 
						
							| 3 |  | df-dfat | ⊢ ( 𝐹  defAt  𝐴  ↔  ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) ) ) | 
						
							| 4 | 2 3 | bitr3i | ⊢ ( ( 𝐹 '''' 𝐴 )  ∈  ran  𝐹  ↔  ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) ) ) | 
						
							| 5 | 4 | notbii | ⊢ ( ¬  ( 𝐹 '''' 𝐴 )  ∈  ran  𝐹  ↔  ¬  ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) ) ) | 
						
							| 6 |  | ianor | ⊢ ( ¬  ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  ↔  ( ¬  𝐴  ∈  dom  𝐹  ∨  ¬  Fun  ( 𝐹  ↾  { 𝐴 } ) ) ) | 
						
							| 7 | 1 5 6 | 3bitri | ⊢ ( ( 𝐹 '''' 𝐴 )  ∉  ran  𝐹  ↔  ( ¬  𝐴  ∈  dom  𝐹  ∨  ¬  Fun  ( 𝐹  ↾  { 𝐴 } ) ) ) | 
						
							| 8 |  | ndmfv | ⊢ ( ¬  𝐴  ∈  dom  𝐹  →  ( 𝐹 ‘ 𝐴 )  =  ∅ ) | 
						
							| 9 |  | nfunsn | ⊢ ( ¬  Fun  ( 𝐹  ↾  { 𝐴 } )  →  ( 𝐹 ‘ 𝐴 )  =  ∅ ) | 
						
							| 10 | 8 9 | jaoi | ⊢ ( ( ¬  𝐴  ∈  dom  𝐹  ∨  ¬  Fun  ( 𝐹  ↾  { 𝐴 } ) )  →  ( 𝐹 ‘ 𝐴 )  =  ∅ ) | 
						
							| 11 | 7 10 | sylbi | ⊢ ( ( 𝐹 '''' 𝐴 )  ∉  ran  𝐹  →  ( 𝐹 ‘ 𝐴 )  =  ∅ ) |