Metamath Proof Explorer


Theorem afv2ndeffv0

Description: If the alternate function value at an argument is undefined, i.e., not in the range of the function, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv2ndeffv0 ( ( 𝐹 '''' 𝐴 ) ∉ ran 𝐹 → ( 𝐹𝐴 ) = ∅ )

Proof

Step Hyp Ref Expression
1 df-nel ( ( 𝐹 '''' 𝐴 ) ∉ ran 𝐹 ↔ ¬ ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 )
2 dfatafv2rnb ( 𝐹 defAt 𝐴 ↔ ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 )
3 df-dfat ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
4 2 3 bitr3i ( ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
5 4 notbii ( ¬ ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 ↔ ¬ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
6 ianor ( ¬ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ↔ ( ¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
7 1 5 6 3bitri ( ( 𝐹 '''' 𝐴 ) ∉ ran 𝐹 ↔ ( ¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
8 ndmfv ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹𝐴 ) = ∅ )
9 nfunsn ( ¬ Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐹𝐴 ) = ∅ )
10 8 9 jaoi ( ( ¬ 𝐴 ∈ dom 𝐹 ∨ ¬ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐹𝐴 ) = ∅ )
11 7 10 sylbi ( ( 𝐹 '''' 𝐴 ) ∉ ran 𝐹 → ( 𝐹𝐴 ) = ∅ )