Metamath Proof Explorer


Theorem dfatafv2eqfv

Description: If a function is defined at a class A , the alternate function value equals the function's value at A . (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion dfatafv2eqfv ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) = ( 𝐹𝐴 ) )

Proof

Step Hyp Ref Expression
1 dfafv22 ( 𝐹 '''' 𝐴 ) = if ( 𝐹 defAt 𝐴 , ( 𝐹𝐴 ) , 𝒫 ran 𝐹 )
2 iftrue ( 𝐹 defAt 𝐴 → if ( 𝐹 defAt 𝐴 , ( 𝐹𝐴 ) , 𝒫 ran 𝐹 ) = ( 𝐹𝐴 ) )
3 1 2 syl5eq ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) = ( 𝐹𝐴 ) )