Metamath Proof Explorer


Theorem dfatafv2eqfv

Description: If a function is defined at a class A , the alternate function value equals the function's value at A . (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion dfatafv2eqfv FdefAtAF''''A=FA

Proof

Step Hyp Ref Expression
1 dfafv22 F''''A=ifFdefAtAFA𝒫ranF
2 iftrue FdefAtAifFdefAtAFA𝒫ranF=FA
3 1 2 eqtrid FdefAtAF''''A=FA