Metamath Proof Explorer


Theorem afv2rnfveq

Description: If the alternate function value is defined, i.e., in the range of the function, the alternate function value equals the function's value. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv2rnfveq F '''' A ran F F '''' A = F A

Proof

Step Hyp Ref Expression
1 dfatafv2rnb F defAt A F '''' A ran F
2 dfatafv2eqfv F defAt A F '''' A = F A
3 1 2 sylbir F '''' A ran F F '''' A = F A