Metamath Proof Explorer


Theorem afv2rnfveq

Description: If the alternate function value is defined, i.e., in the range of the function, the alternate function value equals the function's value. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv2rnfveq
|- ( ( F '''' A ) e. ran F -> ( F '''' A ) = ( F ` A ) )

Proof

Step Hyp Ref Expression
1 dfatafv2rnb
 |-  ( F defAt A <-> ( F '''' A ) e. ran F )
2 dfatafv2eqfv
 |-  ( F defAt A -> ( F '''' A ) = ( F ` A ) )
3 1 2 sylbir
 |-  ( ( F '''' A ) e. ran F -> ( F '''' A ) = ( F ` A ) )