Metamath Proof Explorer


Theorem dfatafv2eqfv

Description: If a function is defined at a class A , the alternate function value equals the function's value at A . (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion dfatafv2eqfv
|- ( F defAt A -> ( F '''' A ) = ( F ` A ) )

Proof

Step Hyp Ref Expression
1 dfafv22
 |-  ( F '''' A ) = if ( F defAt A , ( F ` A ) , ~P U. ran F )
2 iftrue
 |-  ( F defAt A -> if ( F defAt A , ( F ` A ) , ~P U. ran F ) = ( F ` A ) )
3 1 2 eqtrid
 |-  ( F defAt A -> ( F '''' A ) = ( F ` A ) )