Metamath Proof Explorer


Theorem dfafv22

Description: Alternate definition of ( F '''' A ) using ( FA ) directly. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion dfafv22
|- ( F '''' A ) = if ( F defAt A , ( F ` A ) , ~P U. ran F )

Proof

Step Hyp Ref Expression
1 df-afv2
 |-  ( F '''' A ) = if ( F defAt A , ( iota x A F x ) , ~P U. ran F )
2 df-fv
 |-  ( F ` A ) = ( iota x A F x )
3 2 eqcomi
 |-  ( iota x A F x ) = ( F ` A )
4 ifeq1
 |-  ( ( iota x A F x ) = ( F ` A ) -> if ( F defAt A , ( iota x A F x ) , ~P U. ran F ) = if ( F defAt A , ( F ` A ) , ~P U. ran F ) )
5 3 4 ax-mp
 |-  if ( F defAt A , ( iota x A F x ) , ~P U. ran F ) = if ( F defAt A , ( F ` A ) , ~P U. ran F )
6 1 5 eqtri
 |-  ( F '''' A ) = if ( F defAt A , ( F ` A ) , ~P U. ran F )