Step |
Hyp |
Ref |
Expression |
1 |
|
df-afv2 |
|- ( F '''' A ) = if ( F defAt A , ( iota x A F x ) , ~P U. ran F ) |
2 |
|
df-fv |
|- ( F ` A ) = ( iota x A F x ) |
3 |
2
|
eqcomi |
|- ( iota x A F x ) = ( F ` A ) |
4 |
|
ifeq1 |
|- ( ( iota x A F x ) = ( F ` A ) -> if ( F defAt A , ( iota x A F x ) , ~P U. ran F ) = if ( F defAt A , ( F ` A ) , ~P U. ran F ) ) |
5 |
3 4
|
ax-mp |
|- if ( F defAt A , ( iota x A F x ) , ~P U. ran F ) = if ( F defAt A , ( F ` A ) , ~P U. ran F ) |
6 |
1 5
|
eqtri |
|- ( F '''' A ) = if ( F defAt A , ( F ` A ) , ~P U. ran F ) |