| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-nel |  |-  ( ( F '''' A ) e/ ran F <-> -. ( F '''' A ) e. ran F ) | 
						
							| 2 |  | dfatafv2rnb |  |-  ( F defAt A <-> ( F '''' A ) e. ran F ) | 
						
							| 3 |  | df-dfat |  |-  ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) ) | 
						
							| 4 | 2 3 | bitr3i |  |-  ( ( F '''' A ) e. ran F <-> ( A e. dom F /\ Fun ( F |` { A } ) ) ) | 
						
							| 5 | 4 | notbii |  |-  ( -. ( F '''' A ) e. ran F <-> -. ( A e. dom F /\ Fun ( F |` { A } ) ) ) | 
						
							| 6 |  | ianor |  |-  ( -. ( A e. dom F /\ Fun ( F |` { A } ) ) <-> ( -. A e. dom F \/ -. Fun ( F |` { A } ) ) ) | 
						
							| 7 | 1 5 6 | 3bitri |  |-  ( ( F '''' A ) e/ ran F <-> ( -. A e. dom F \/ -. Fun ( F |` { A } ) ) ) | 
						
							| 8 |  | ndmfv |  |-  ( -. A e. dom F -> ( F ` A ) = (/) ) | 
						
							| 9 |  | nfunsn |  |-  ( -. Fun ( F |` { A } ) -> ( F ` A ) = (/) ) | 
						
							| 10 | 8 9 | jaoi |  |-  ( ( -. A e. dom F \/ -. Fun ( F |` { A } ) ) -> ( F ` A ) = (/) ) | 
						
							| 11 | 7 10 | sylbi |  |-  ( ( F '''' A ) e/ ran F -> ( F ` A ) = (/) ) |