Metamath Proof Explorer


Theorem afv2ndeffv0

Description: If the alternate function value at an argument is undefined, i.e., not in the range of the function, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv2ndeffv0
|- ( ( F '''' A ) e/ ran F -> ( F ` A ) = (/) )

Proof

Step Hyp Ref Expression
1 df-nel
 |-  ( ( F '''' A ) e/ ran F <-> -. ( F '''' A ) e. ran F )
2 dfatafv2rnb
 |-  ( F defAt A <-> ( F '''' A ) e. ran F )
3 df-dfat
 |-  ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) )
4 2 3 bitr3i
 |-  ( ( F '''' A ) e. ran F <-> ( A e. dom F /\ Fun ( F |` { A } ) ) )
5 4 notbii
 |-  ( -. ( F '''' A ) e. ran F <-> -. ( A e. dom F /\ Fun ( F |` { A } ) ) )
6 ianor
 |-  ( -. ( A e. dom F /\ Fun ( F |` { A } ) ) <-> ( -. A e. dom F \/ -. Fun ( F |` { A } ) ) )
7 1 5 6 3bitri
 |-  ( ( F '''' A ) e/ ran F <-> ( -. A e. dom F \/ -. Fun ( F |` { A } ) ) )
8 ndmfv
 |-  ( -. A e. dom F -> ( F ` A ) = (/) )
9 nfunsn
 |-  ( -. Fun ( F |` { A } ) -> ( F ` A ) = (/) )
10 8 9 jaoi
 |-  ( ( -. A e. dom F \/ -. Fun ( F |` { A } ) ) -> ( F ` A ) = (/) )
11 7 10 sylbi
 |-  ( ( F '''' A ) e/ ran F -> ( F ` A ) = (/) )