Step |
Hyp |
Ref |
Expression |
1 |
|
df-nel |
|- ( ( F '''' A ) e/ ran F <-> -. ( F '''' A ) e. ran F ) |
2 |
|
dfatafv2rnb |
|- ( F defAt A <-> ( F '''' A ) e. ran F ) |
3 |
|
df-dfat |
|- ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) ) |
4 |
2 3
|
bitr3i |
|- ( ( F '''' A ) e. ran F <-> ( A e. dom F /\ Fun ( F |` { A } ) ) ) |
5 |
4
|
notbii |
|- ( -. ( F '''' A ) e. ran F <-> -. ( A e. dom F /\ Fun ( F |` { A } ) ) ) |
6 |
|
ianor |
|- ( -. ( A e. dom F /\ Fun ( F |` { A } ) ) <-> ( -. A e. dom F \/ -. Fun ( F |` { A } ) ) ) |
7 |
1 5 6
|
3bitri |
|- ( ( F '''' A ) e/ ran F <-> ( -. A e. dom F \/ -. Fun ( F |` { A } ) ) ) |
8 |
|
ndmfv |
|- ( -. A e. dom F -> ( F ` A ) = (/) ) |
9 |
|
nfunsn |
|- ( -. Fun ( F |` { A } ) -> ( F ` A ) = (/) ) |
10 |
8 9
|
jaoi |
|- ( ( -. A e. dom F \/ -. Fun ( F |` { A } ) ) -> ( F ` A ) = (/) ) |
11 |
7 10
|
sylbi |
|- ( ( F '''' A ) e/ ran F -> ( F ` A ) = (/) ) |