Description: Alternate definition of ( F '''' A ) using ( FA ) directly. (Contributed by AV, 3-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfafv22 | ⊢ ( 𝐹 '''' 𝐴 ) = if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , 𝒫 ∪ ran 𝐹 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-afv2 | ⊢ ( 𝐹 '''' 𝐴 ) = if ( 𝐹 defAt 𝐴 , ( ℩ 𝑥 𝐴 𝐹 𝑥 ) , 𝒫 ∪ ran 𝐹 ) | |
| 2 | df-fv | ⊢ ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) | |
| 3 | 2 | eqcomi | ⊢ ( ℩ 𝑥 𝐴 𝐹 𝑥 ) = ( 𝐹 ‘ 𝐴 ) | 
| 4 | ifeq1 | ⊢ ( ( ℩ 𝑥 𝐴 𝐹 𝑥 ) = ( 𝐹 ‘ 𝐴 ) → if ( 𝐹 defAt 𝐴 , ( ℩ 𝑥 𝐴 𝐹 𝑥 ) , 𝒫 ∪ ran 𝐹 ) = if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , 𝒫 ∪ ran 𝐹 ) ) | |
| 5 | 3 4 | ax-mp | ⊢ if ( 𝐹 defAt 𝐴 , ( ℩ 𝑥 𝐴 𝐹 𝑥 ) , 𝒫 ∪ ran 𝐹 ) = if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , 𝒫 ∪ ran 𝐹 ) | 
| 6 | 1 5 | eqtri | ⊢ ( 𝐹 '''' 𝐴 ) = if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , 𝒫 ∪ ran 𝐹 ) |