Description: Alternate definition of ( F '''' A ) using ( FA ) directly. (Contributed by AV, 3-Sep-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | dfafv22 | ⊢ ( 𝐹 '''' 𝐴 ) = if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , 𝒫 ∪ ran 𝐹 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-afv2 | ⊢ ( 𝐹 '''' 𝐴 ) = if ( 𝐹 defAt 𝐴 , ( ℩ 𝑥 𝐴 𝐹 𝑥 ) , 𝒫 ∪ ran 𝐹 ) | |
2 | df-fv | ⊢ ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) | |
3 | 2 | eqcomi | ⊢ ( ℩ 𝑥 𝐴 𝐹 𝑥 ) = ( 𝐹 ‘ 𝐴 ) |
4 | ifeq1 | ⊢ ( ( ℩ 𝑥 𝐴 𝐹 𝑥 ) = ( 𝐹 ‘ 𝐴 ) → if ( 𝐹 defAt 𝐴 , ( ℩ 𝑥 𝐴 𝐹 𝑥 ) , 𝒫 ∪ ran 𝐹 ) = if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , 𝒫 ∪ ran 𝐹 ) ) | |
5 | 3 4 | ax-mp | ⊢ if ( 𝐹 defAt 𝐴 , ( ℩ 𝑥 𝐴 𝐹 𝑥 ) , 𝒫 ∪ ran 𝐹 ) = if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , 𝒫 ∪ ran 𝐹 ) |
6 | 1 5 | eqtri | ⊢ ( 𝐹 '''' 𝐴 ) = if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , 𝒫 ∪ ran 𝐹 ) |