Metamath Proof Explorer


Theorem dfafv22

Description: Alternate definition of ( F '''' A ) using ( FA ) directly. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion dfafv22 ( 𝐹 '''' 𝐴 ) = if ( 𝐹 defAt 𝐴 , ( 𝐹𝐴 ) , 𝒫 ran 𝐹 )

Proof

Step Hyp Ref Expression
1 df-afv2 ( 𝐹 '''' 𝐴 ) = if ( 𝐹 defAt 𝐴 , ( ℩ 𝑥 𝐴 𝐹 𝑥 ) , 𝒫 ran 𝐹 )
2 df-fv ( 𝐹𝐴 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 )
3 2 eqcomi ( ℩ 𝑥 𝐴 𝐹 𝑥 ) = ( 𝐹𝐴 )
4 ifeq1 ( ( ℩ 𝑥 𝐴 𝐹 𝑥 ) = ( 𝐹𝐴 ) → if ( 𝐹 defAt 𝐴 , ( ℩ 𝑥 𝐴 𝐹 𝑥 ) , 𝒫 ran 𝐹 ) = if ( 𝐹 defAt 𝐴 , ( 𝐹𝐴 ) , 𝒫 ran 𝐹 ) )
5 3 4 ax-mp if ( 𝐹 defAt 𝐴 , ( ℩ 𝑥 𝐴 𝐹 𝑥 ) , 𝒫 ran 𝐹 ) = if ( 𝐹 defAt 𝐴 , ( 𝐹𝐴 ) , 𝒫 ran 𝐹 )
6 1 5 eqtri ( 𝐹 '''' 𝐴 ) = if ( 𝐹 defAt 𝐴 , ( 𝐹𝐴 ) , 𝒫 ran 𝐹 )