Metamath Proof Explorer


Theorem dfafv22

Description: Alternate definition of ( F '''' A ) using ( FA ) directly. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion dfafv22 F '''' A = if F defAt A F A 𝒫 ran F

Proof

Step Hyp Ref Expression
1 df-afv2 F '''' A = if F defAt A ι x | A F x 𝒫 ran F
2 df-fv F A = ι x | A F x
3 2 eqcomi ι x | A F x = F A
4 ifeq1 ι x | A F x = F A if F defAt A ι x | A F x 𝒫 ran F = if F defAt A F A 𝒫 ran F
5 3 4 ax-mp if F defAt A ι x | A F x 𝒫 ran F = if F defAt A F A 𝒫 ran F
6 1 5 eqtri F '''' A = if F defAt A F A 𝒫 ran F