Metamath Proof Explorer


Theorem dfafv22

Description: Alternate definition of ( F '''' A ) using ( FA ) directly. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion dfafv22 F''''A=ifFdefAtAFA𝒫ranF

Proof

Step Hyp Ref Expression
1 df-afv2 F''''A=ifFdefAtAιx|AFx𝒫ranF
2 df-fv FA=ιx|AFx
3 2 eqcomi ιx|AFx=FA
4 ifeq1 ιx|AFx=FAifFdefAtAιx|AFx𝒫ranF=ifFdefAtAFA𝒫ranF
5 3 4 ax-mp ifFdefAtAιx|AFx𝒫ranF=ifFdefAtAFA𝒫ranF
6 1 5 eqtri F''''A=ifFdefAtAFA𝒫ranF