Metamath Proof Explorer


Theorem afv20fv0

Description: If the alternate function value at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv20fv0
|- ( ( F '''' A ) = (/) -> ( F ` A ) = (/) )

Proof

Step Hyp Ref Expression
1 afv20defat
 |-  ( ( F '''' A ) = (/) -> F defAt A )
2 dfatafv2eqfv
 |-  ( F defAt A -> ( F '''' A ) = ( F ` A ) )
3 2 eqcomd
 |-  ( F defAt A -> ( F ` A ) = ( F '''' A ) )
4 3 adantr
 |-  ( ( F defAt A /\ ( F '''' A ) = (/) ) -> ( F ` A ) = ( F '''' A ) )
5 simpr
 |-  ( ( F defAt A /\ ( F '''' A ) = (/) ) -> ( F '''' A ) = (/) )
6 4 5 eqtrd
 |-  ( ( F defAt A /\ ( F '''' A ) = (/) ) -> ( F ` A ) = (/) )
7 1 6 mpancom
 |-  ( ( F '''' A ) = (/) -> ( F ` A ) = (/) )