Metamath Proof Explorer


Theorem afv2fvn0fveq

Description: If the function's value at an argument is not the empty set, it equals the alternate function value at this argument. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv2fvn0fveq
|- ( ( F ` A ) =/= (/) -> ( F '''' A ) = ( F ` A ) )

Proof

Step Hyp Ref Expression
1 fvfundmfvn0
 |-  ( ( F ` A ) =/= (/) -> ( A e. dom F /\ Fun ( F |` { A } ) ) )
2 df-dfat
 |-  ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) )
3 1 2 sylibr
 |-  ( ( F ` A ) =/= (/) -> F defAt A )
4 dfatafv2eqfv
 |-  ( F defAt A -> ( F '''' A ) = ( F ` A ) )
5 3 4 syl
 |-  ( ( F ` A ) =/= (/) -> ( F '''' A ) = ( F ` A ) )